Tree Recursion

Announcements

Order of Recursive Calls

The Cascade Function

def cascade(n):
if n < 10:
print(n)
else:
print(n)
cascade(n//10)
print(n)

cascade(123)

Program output:

(Demo)

Global frame
cascade

fl: cascade [parent=Global]
n 123

f2: cascade [parent=Global]
n 12

Return None
value

: cascade [parent=Global]
n 1

Return None
value

func cascade(n) [parent=Global]

-Each cascade frame is from a

different call to cascade.

-Until the Return value appears,

that call has not completed.

-Any statement can appear before

or after the recursive call

Two Definitions of Cascade

def cascade(n):
if n < 10:
print(n)
else:
print(n)
cascade(n//10)
print(n)

(Demo)

def cascade(n):
print(n)
if n >= 10:
cascade(n//10)
print(n)

- If two implementations are equally clear, then shorter is usually better

In this case, the longer implementation is more clear (at least to me)

- When learning to write recursive functions, put the base cases first

Both are recursive functions, even though only the first has typical structure

Example: Inverse Cascade

Inverse Cascade

Write a function that prints an inverse cascade:

1 def inverse_cascade(n):
12 grow(n)
print(n)
i§§4 shrink(n)
1%3 def f_then_g(f, g, n):
if n:
1 f(n)
g(n)

grow = lambda n: f_then_g(
shrink = lambda n: f_then_g(

Tree Recursion

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

n: 0,12, 3,4,5,6, 7, 8, ey 35

fib(n): o, 1, 1, 2, 3, 5, 8, 13, 21, ey 9,227,465

def fib(n):
if n ==
return 0
elif n == 1:
return 1
else:
return fib(n-2) + fib(n-1)

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

" tib(5)

7 £ib(3)
A N
[fib(1) fib(2)
L / N
1 fib(@) fib(1)

. 0
@

“o.
y &

fib(0) fib(1)

Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times

fib(5)
fib(3) fib(4)
/ AN
fib(1) fib(2)
7 N fib(2) fib(3)
1 fib(0) fib(1) V N V N
‘ ‘ fib(0) fib(1) fib(1) fib(2)
’ ! \ \ N
0 1 1 fib(0) fib(1)
] 1

(We will speed up this computation dramatically in a few weeks by remembering results)

Example: Counting Partitions

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

count_partitions(6, 4)

2+4=6 oe oeoee
1+1+4=6 ® e [I I I)
3+3=6 oee oee
1+2+3=6 @ eoe oee
1+1+1+3=6 @ e e ([I I J
2+2+2=6 oe ®oe oe
1+1+2+2=6 ® @ oe [I)
1+1+1+1+2=6 ® ® o o [T)
1+1+1+1+1+1=6 ® ® @ @ o 0o

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in non-
decreasing order.

count_partitions(6, 4)

-Recursive decomposition: finding
simpler instances of the problem.

-Explore two possibilities: .
-Use at least one 4 .
-Don't use any 4 ’

-Solve two simpler problems: '/

- count_partitions(2, 4) ---"
ccount_partitions(6, 3) ===========-=

-Tree recursion often involves
exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

-Recursive decomposition: finding

simpler instances of the problem.

-Explore two possibilities:
-Use at least one 4

-Don't use any 4

-Solve two simpler problems:
- count_partitions(2, 4)
- count_partitions(6, 3)

-Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
if n == 0:
return 1
elif n < 0:
return @
elif m ==
return 0
else:
~-=-» with m = count_partitions(n-m, m)
------- » without_m = count_partitions(n, m-1)
return with m + without_m

(Demo)

