
Containers

Announcements

Box-and-Pointer Notation

The Closure Property of Data Types

4

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if: 
 
 The result of combination can itself be combined using the same method

4

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if: 
 
 The result of combination can itself be combined using the same method

•Closure is powerful because it permits us to create hierarchical structures

4

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if: 
 
 The result of combination can itself be combined using the same method

•Closure is powerful because it permits us to create hierarchical structures

•Hierarchical structures are made up of parts, which themselves are made up
of parts, and so on

4

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if: 
 
 The result of combination can itself be combined using the same method

•Closure is powerful because it permits us to create hierarchical structures

•Hierarchical structures are made up of parts, which themselves are made up
of parts, and so on

Lists can contain lists as elements (in addition to anything else)

4

Box-and-Pointer Notation in Environment Diagrams

5

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

5

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

5

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

5

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

5

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

6
pythontutor.com/composingprograms.html#code=pair%20%3D%20[1,%202]%0A%0Anested_list%20%3D%20[[1,%202],%20[],%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20[[3,%20False,%20None],
%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20[4,%20lambda%3A%205]]]&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=4

Slicing

(Demo)

Slicing Creates New Values

8
pythontutor.com/composingprograms.html#code=digits%20%3D%20[1,%208,%202,%208]%0Astart%20%3D%20digits[%3A1]%0Amiddle%20%3D%20digits[1%3A3]%0Aend%20%3D%20digits[2%3A]%0Afull%20%3D%20digits[%3A]&cumulative%3Dtrue&curInstr%3D5&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=[]

Processing Container Values

Aggregation

10

Aggregation

Several built-in functions take iterable arguments and aggregate them into a value

10

Aggregation

Several built-in functions take iterable arguments and aggregate them into a value

• sum(iterable[, start]) -> value 
 
Return the sum of an iterable (not of strings) plus the value 
of parameter 'start' (which defaults to 0). When the iterable is 
empty, return start.

10

Aggregation

Several built-in functions take iterable arguments and aggregate them into a value

• sum(iterable[, start]) -> value 
 
Return the sum of an iterable (not of strings) plus the value 
of parameter 'start' (which defaults to 0). When the iterable is 
empty, return start.

• max(iterable[, key=func]) -> value 
max(a, b, c, ...[, key=func]) -> value 
 
With a single iterable argument, return its largest item. 
With two or more arguments, return the largest argument.

10

Aggregation

Several built-in functions take iterable arguments and aggregate them into a value

• sum(iterable[, start]) -> value 
 
Return the sum of an iterable (not of strings) plus the value 
of parameter 'start' (which defaults to 0). When the iterable is 
empty, return start.

• max(iterable[, key=func]) -> value 
max(a, b, c, ...[, key=func]) -> value 
 
With a single iterable argument, return its largest item. 
With two or more arguments, return the largest argument.

• all(iterable) -> bool 
 
Return True if bool(x) is True for all values x in the iterable. 
If the iterable is empty, return True.

10

Strings

Strings are an Abstraction

12

Strings are an Abstraction

Representing data:

'200' '1.2e-5' 'False' '[1, 2]'

12

Strings are an Abstraction

Representing data:

'200' '1.2e-5' 'False' '[1, 2]'

Representing language:

"""And, as imagination bodies forth

The forms of things unknown, the poet's pen

Turns them to shapes, and gives to airy nothing

A local habitation and a name.

"""

12

Strings are an Abstraction

Representing data:

'200' '1.2e-5' 'False' '[1, 2]'

Representing language:

"""And, as imagination bodies forth

The forms of things unknown, the poet's pen

Turns them to shapes, and gives to airy nothing

A local habitation and a name.

"""

Representing programs:

'curry = lambda f: lambda x: lambda y: f(x, y)'

12

Strings are an Abstraction

Representing data:

'200' '1.2e-5' 'False' '[1, 2]'

Representing language:

"""And, as imagination bodies forth

The forms of things unknown, the poet's pen

Turns them to shapes, and gives to airy nothing

A local habitation and a name.

"""

Representing programs:

'curry = lambda f: lambda x: lambda y: f(x, y)'

(Demo)

12

String Literals Have Three Forms

>>> 'I am string!'

'I am string!'

>>> "I've got an apostrophe"

"I've got an apostrophe"

>>> '您好'

'您好'

13

String Literals Have Three Forms

>>> 'I am string!'

'I am string!'

>>> "I've got an apostrophe"

"I've got an apostrophe"

>>> '您好'

'您好'

Single-quoted and double-quoted
strings are equivalent

13

String Literals Have Three Forms

>>> 'I am string!'

'I am string!'

>>> "I've got an apostrophe"

"I've got an apostrophe"

>>> '您好'

'您好'

>>> """The Zen of Python

claims, Readability counts.

Read more: import this."""

'The Zen of Python\nclaims, Readability counts.\nRead more: import this.'

Single-quoted and double-quoted
strings are equivalent

13

String Literals Have Three Forms

>>> 'I am string!'

'I am string!'

>>> "I've got an apostrophe"

"I've got an apostrophe"

>>> '您好'

'您好'

>>> """The Zen of Python

claims, Readability counts.

Read more: import this."""

'The Zen of Python\nclaims, Readability counts.\nRead more: import this.'

A backslash "escapes" the
following character

Single-quoted and double-quoted
strings are equivalent

13

String Literals Have Three Forms

>>> 'I am string!'

'I am string!'

>>> "I've got an apostrophe"

"I've got an apostrophe"

>>> '您好'

'您好'

>>> """The Zen of Python

claims, Readability counts.

Read more: import this."""

'The Zen of Python\nclaims, Readability counts.\nRead more: import this.'

"Line feed" character
represents a new line

A backslash "escapes" the
following character

Single-quoted and double-quoted
strings are equivalent

13

Dictionaries

{'Dem': 0}

Limitations on Dictionaries

15

Limitations on Dictionaries

Dictionaries are collections of key-value pairs

15

Limitations on Dictionaries

Dictionaries are collections of key-value pairs

Dictionary keys do have two restrictions:

15

Limitations on Dictionaries

Dictionaries are collections of key-value pairs

Dictionary keys do have two restrictions:

•A key of a dictionary cannot be a list or a dictionary (or any mutable type)

15

Limitations on Dictionaries

Dictionaries are collections of key-value pairs

Dictionary keys do have two restrictions:

•A key of a dictionary cannot be a list or a dictionary (or any mutable type)

•Two keys cannot be equal; There can be at most one value for a given key

15

Limitations on Dictionaries

Dictionaries are collections of key-value pairs

Dictionary keys do have two restrictions:

•A key of a dictionary cannot be a list or a dictionary (or any mutable type)

•Two keys cannot be equal; There can be at most one value for a given key

This first restriction is tied to Python's underlying implementation of dictionaries

15

Limitations on Dictionaries

Dictionaries are collections of key-value pairs

Dictionary keys do have two restrictions:

•A key of a dictionary cannot be a list or a dictionary (or any mutable type)

•Two keys cannot be equal; There can be at most one value for a given key

This first restriction is tied to Python's underlying implementation of dictionaries

The second restriction is part of the dictionary abstraction

15

Limitations on Dictionaries

Dictionaries are collections of key-value pairs

Dictionary keys do have two restrictions:

•A key of a dictionary cannot be a list or a dictionary (or any mutable type)

•Two keys cannot be equal; There can be at most one value for a given key

This first restriction is tied to Python's underlying implementation of dictionaries

The second restriction is part of the dictionary abstraction

If you want to associate multiple values with a key, store them all in a sequence value

15

Dictionary Comprehensions

16

Dictionary Comprehensions

16

{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>}

Dictionary Comprehensions

16

Short version: {<key exp>: <value exp> for <name> in <iter exp>}

{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>}

Dictionary Comprehensions

16

Short version: {<key exp>: <value exp> for <name> in <iter exp>}

{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>}

An expression that evaluates to a dictionary using this evaluation procedure:

Dictionary Comprehensions

16

Short version: {<key exp>: <value exp> for <name> in <iter exp>}

{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>}

An expression that evaluates to a dictionary using this evaluation procedure:

1. Add a new frame with the current frame as its parent

Dictionary Comprehensions

16

Short version: {<key exp>: <value exp> for <name> in <iter exp>}

{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>}

An expression that evaluates to a dictionary using this evaluation procedure:

1. Add a new frame with the current frame as its parent

2. Create an empty result dictionary that is the value of the expression

Dictionary Comprehensions

16

Short version: {<key exp>: <value exp> for <name> in <iter exp>}

{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>}

An expression that evaluates to a dictionary using this evaluation procedure:

1. Add a new frame with the current frame as its parent

2. Create an empty result dictionary that is the value of the expression

3. For each element in the iterable value of <iter exp>:

Dictionary Comprehensions

16

Short version: {<key exp>: <value exp> for <name> in <iter exp>}

{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>}

An expression that evaluates to a dictionary using this evaluation procedure:

1. Add a new frame with the current frame as its parent

2. Create an empty result dictionary that is the value of the expression

3. For each element in the iterable value of <iter exp>:

A. Bind <name> to that element in the new frame from step 1

Dictionary Comprehensions

16

Short version: {<key exp>: <value exp> for <name> in <iter exp>}

{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>}

An expression that evaluates to a dictionary using this evaluation procedure:

1. Add a new frame with the current frame as its parent

2. Create an empty result dictionary that is the value of the expression

3. For each element in the iterable value of <iter exp>:

A. Bind <name> to that element in the new frame from step 1

B. If <filter exp> evaluates to a true value, then add to the result dictionary
an entry that pairs the value of <key exp> to the value of <value exp>

Dictionary Comprehensions

16

Short version: {<key exp>: <value exp> for <name> in <iter exp>}

{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>}

An expression that evaluates to a dictionary using this evaluation procedure:

1. Add a new frame with the current frame as its parent

2. Create an empty result dictionary that is the value of the expression

3. For each element in the iterable value of <iter exp>:

A. Bind <name> to that element in the new frame from step 1

B. If <filter exp> evaluates to a true value, then add to the result dictionary
an entry that pairs the value of <key exp> to the value of <value exp>

{x * x: x for x in [1, 2, 3, 4, 5] if x > 2} evaluates to {9: 3, 16: 4, 25: 5}

Example: Indexing

Implement index, which takes a sequence of keys, a sequence of values, and a two-argument
match function. It returns a dictionary from keys to lists in which the list for a key k
contains all values v for which match(k, v) is a true value.

def index(keys, values, match):
 """Return a dictionary from keys k to a list of values v for which
 match(k, v) is a true value.

 >>> index([7, 9, 11], range(30, 50), lambda k, v: v % k == 0)
 {7: [35, 42, 49], 9: [36, 45], 11: [33, 44]}
 """

 return __

17

Example: Indexing

Implement index, which takes a sequence of keys, a sequence of values, and a two-argument
match function. It returns a dictionary from keys to lists in which the list for a key k
contains all values v for which match(k, v) is a true value.

def index(keys, values, match):
 """Return a dictionary from keys k to a list of values v for which
 match(k, v) is a true value.

 >>> index([7, 9, 11], range(30, 50), lambda k, v: v % k == 0)
 {7: [35, 42, 49], 9: [36, 45], 11: [33, 44]}
 """

 return __

17

{k: for k in keys}

Example: Indexing

Implement index, which takes a sequence of keys, a sequence of values, and a two-argument
match function. It returns a dictionary from keys to lists in which the list for a key k
contains all values v for which match(k, v) is a true value.

def index(keys, values, match):
 """Return a dictionary from keys k to a list of values v for which
 match(k, v) is a true value.

 >>> index([7, 9, 11], range(30, 50), lambda k, v: v % k == 0)
 {7: [35, 42, 49], 9: [36, 45], 11: [33, 44]}
 """

 return __

17

{k: for k in keys}[v for v in values if match(k, v)]

