

Announcements

Trees

Tree Abstraction

o,

Tree Abstraction

)
oS @

Recursive description (wooden trees): Relative description (family trees):

Tree Abstraction

)
oS @

(wooden trees): Relative description (family trees):

A tree has a root label and a list of branches

Tree Abstraction

Root label
Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches

Tree Abstraction

Root label 4@

Branch —>

OO

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches

Tree Abstraction

Root label 4@

Branch —>

OO

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches

Each branch is a tree

Tree Abstraction

Root label 4@

Branch —>
(also a tree)

OO

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches

Each branch is a tree

Tree Abstraction

OO

(wooden trees): Relative description (family trees):

A tree has a root label and a list of branches
Each branch is a tree

A tree with zero branches is called a leaf

Tree Abstraction

Root label 4@

Branch —>

(also a tree) \
| (also a tree)é @

'

'

'

.
.

Recursive description (wooden trees): Relative description (family trees):
A tree has a root label and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

Tree Abstraction

Root label 4@

Branch —>

(also a tree) \
(also a tree) @

Recursive description (wooden trees): Relative description (family trees):
A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction
Root of the whole tree

Root label 4@

Branch —>

(also a tree) \
| (also a tree)é @

'

'

'

.
.

Recursive description (wooden trees): Relative description (family trees):
A tree has a root label and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction
Root of the whole tree

Root label 4@

Branch —>
(also a tree)

Root of a branch

OO

Recursive description (wooden trees): Relative description (family trees):

'
'
'
.
.

A tree has a root label and a list of branches
Each branch is a tree
A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction
Root of the whole tree

\\\‘ — Nodes
Root label <
Root of a branch
Branch —>
(also a tree) : \ § ;

OO

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node

'

'

'

.
.

Each branch is a tree
A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction
Root of the whole tree

\\\‘ — Nodes
Root label <
Root of a branch
Branch—bé
(also a tree) : \ §
:j ; \<v

Recursive description (wooden trees): Relative description (family trees):
A tree has a root label and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label that can be any value

A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction
Root of the whole tree

Root label 4@ . e 4 .

Branch —>
(also a tree)

Root of a branch

'

'

'

.
.

Recursive description (wooden trees): Relative description (family trees):
A tree has a root label and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label that can be any value

A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction
Root of the whole tree

Root label 4@ . e 4 .

Branch —>
(also a tree)

Root of a branch

'
'
'
.
.

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another

A tree starts at the root

Tree Abstraction
Root of the whole tree

Root label 4@ . o 4 .

Branch —>
(also a tree)

Root of a branch

'
'
'
.
.

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another

A tree starts at the root The top node is the root node

Tree Abstraction
Root of the whole tree or Root Node

Root label 4@ . o 4 .

Branch —>
(also a tree)

Root of a branch

'
'
'
.
.

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another

A tree starts at the root The top node is the root node

Tree Abstraction

or Root Node

(wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node

Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another
A tree starts at the root The top node is the root node

People often refer to labels by their locations: "each parent is the sum of its children"

Tree Abstraction
Root of the whole tree or Root Node

Root label 4@ . o 4 .

Branch —>
(also a tree)

Root of a branch

'
'
'
.
.

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node

Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another
A tree starts at the root The top node is the root node

People often refer to labels by their locations: "each parent is the sum of its children"

Implementing the Tree Abstraction

Implementing the Tree Abstraction

* A tree has a root label
and a list of branches

« Each branch is a tree

Implementing the Tree Abstraction

* A tree has a root label
and a list of branches

« Each branch is a tree

Implementing the Tree Abstraction

* A tree has a root label
and a list of branches

« Each branch is a tree

3
1 2
/ AN
1 1

>>> tree(3, [tree(1),
tree(2, [tree(1),
tree(1)1)1)

Implementing the Tree Abstraction

* A tree has a root label
and a list of branches

« Each branch is a tree

3
1 2
/ AN
1 1

>>> tree(3, [tree(1),
tree(2, [tree(1),

- tree(1)1)1)

[3, [11, (2, [1], [1]]]

Implementing the Tree Abstraction

def tree(label, branches=[]):

* A tree has a root label
and a list of branches

« Each branch is a tree

3
1 2
/ AN
1 1

>>> tree(3, [tree(1),
tree(2, [tree(1),

- tree(1)1)1)

[3, [11, (2, [1], [1]]]

Implementing the Tree Abstraction

def tree(label, branches=[]):
return [label] + branches

* A tree has a root label
and a list of branches

« Each branch is a tree

3
1 2
/ AN
1 1

>>> tree(3, [tree(1),
tree(2, [tree(1),

- tree(1)1)1)

[3, [11, (2, [1], [1]]]

Implementing the Tree Abstraction

def tree(label, branches=[]):
return [label] + branches

def label(tree):

* A tree has a root label
and a list of branches

« Each branch is a tree

3
1 2
/ AN
1 1

>>> tree(3, [tree(1),
tree(2, [tree(1),

- tree(1)1)1)

[3, [11, (2, [1], [1]]]

Implementing the Tree Abstraction

def tree(label, branches=[]):
return [label] + branches

def label(tree):
return treel[0]

* A tree has a root label
and a list of branches

« Each branch is a tree

3
1 2
/ AN
1 1

>>> tree(3, [tree(1),
tree(2, [tree(1),

- tree(1)1)1)

[3, [11, (2, [1], [1]]]

Implementing the Tree Abstraction

def tree(label, branches=[]):
return [label] + branches

def label(tree):
return treel[0]

def branches(tree):

* A tree has a root label
and a list of branches

« Each branch is a tree

3
1 2
/ AN
1 1

>>> tree(3, [tree(1),
tree(2, [tree(1),

- tree(1)1)1)

[3, [11, (2, [1], [1]]]

Implementing the Tree Abstraction

def tree(label, branches=[]):

return [label]l + branches

def label(tree):
return treel[0]

def branches(tree):
return tree[l:]

* A tree has a root label
and a list of branches

« Each branch is a tree

3
1 2
/ AN
1 1

>>> tree(3, [tree(1),

tree(2, [tree(1),
- tree(1)1)1)
[3, [11, (2, [1], [1]]]

Implementing the Tree Abstraction

def tree(label, branches=[]):
for branch in branches:
assert is_tree(branch)
return [label]l + list(branches)

def label(tree):
return treel[0]

def branches(tree):
return treel[1:]

* A tree has a root label
and a list of branches

« Each branch is a tree

3
1 2
/ AN
1 1

>>> tree(3, [tree(1),
tree(2, [tree(1),
tree(1)1)1)

[3, [11, [2, [11, [11]]

Implementing the Tree Abstraction

def tree(label, branches=[]):
for branch in branches:
assert is_tree(branch)

Creates a list
from a sequence
of branches

def label(tree):
return treel[0]

def branches(tree):
return treel[1:]

* A tree has a root label
and a list of branches

« Each branch is a tree

3
1 2
/ AN
1 1

>>> tree(3, [tree(1),
tree(2, [tree(1),
tree(1)1)1)

[3, [11, [2, [11, [11]]

Implementing the Tree Abstraction

def tree(label, branches=[]):

tree definition

for branch in branches: \<{ Verifies the

assert is tree(branch)

def label(tree):
return treel[0]

def branches(tree):
return treel[1:]

|

Creates a list
from a sequence
of branches

* A tree has a root label
and a list of branches

« Each branch is a tree

3
1 2
/ AN
1 1

>>> tree(3, [tree(1),
tree(2, [tree(1),

s tree(1)]1)1)
[3, [11, [2, [1], [1]]]

Implementing the Tree Abstraction

def tree(label, branches=[]): . - A tree has a root label
‘for branch in branches: \<{ Verifies the J and a list of branches

N Q§§?Eﬁmi§=ﬁ£§§igﬁﬂﬂﬁhli"mFjee definition - Each branch is a tree

def label(tree): Creates a list 3
return treel[0] from a sequence
of branches
def branches(tree): 1 2
return treel[1:] i// \1

def is_tree(tree): >>> tree(3, [tree(1),

if type(tree) != list or len(tree) < 1: o tree(2, [tree(1),
return False s tree(1)]1)1)
for branch in branches(tree): [3, [11, [2, [1], [11]]

if not is_tree(branch):
return False
return True

Implementing the Tree Abstraction

def tree(label, branches=[]):

“for branch in branches: { Verifies the

assert is_tree(branch)ﬁ

tree definition

and a list of branches

j * A tree has a root label
« Each branch is a tree

Creates a list
from a sequence
of branches

def label(tree):
return treel[0]

def branches(tree):

return treel[1:] RE L

tree is bound
to a list

def is tree(tree):

return False
for branch in branches(tree):
if not is_tree(branch):
return False
return True

3
1 2
/ AN
1 1

>>> tree(3, [tree(1),
tree(2, [tree(1),

- tree(1)1)1)

[3, [11, (2, [1], [1]]]

Implementing the Tree Abstraction

def tree(label, branches=[]): . - A tree has a root label
‘for branch in branches: \<{ Verifies the j and a list of branches

N Q§§?Eﬁmi§=ﬁfﬁﬁigﬁiﬂﬁhli"mFjee definition - Each branch is a tree

def label(tree): Creates a list 3
return treel[0] from a sequence
of branches
def branches(tree): — 1 2
turn tree[1:] Verifies that 4 U
re) tree is bound 1 1
to a list

def is_treeltree): v~ >>> tree(3, [tree(1),

if {type(tree) != listior len(tree) < 1: tree(2, [tree(1),
return False . tree(1)1)1)
for branch in branches(tree): [3, [11, [2, [1], [11]]

if not is_tree(branch):
return False
return True

def is leaf(tree):
return not branches(tree)

Implementing the Tree Abstraction

def tree(label, branches=[]): . - A tree has a root label
‘for branch in branches: \<{ Verifies the j and a list of branches

N Q§§?Eﬁmi§=ﬁfﬁﬁigﬁiﬂﬁhli"mFjee definition - Each branch is a tree

def label(tree): Creates a list 3
return treel0] from a sequence /////’ \\\\\
of branches
def branches(tree): — 1 2
return tree[1:] verifies that / N\
: tree 1s bound 1 1
to a list

def iS__’_C__If_Q_Q_(__’_C__If_Cf_Q_)_E ------------------- >>> tree(3, [tree(1),

if {type(tree) != listior len(tree) < 1: tree(2, [tree(1),
return False . tree(1)1)1)
for branch in branches(tree): [3, [11, [2, [1], [11]]

if not is_tree(branch):
return False
return True

def is leaf(tree):
return not branches(tree) (Demo)

Tree Processing

Tree Processing

(Demo)

Tree Processing Uses Recursion

Tree Processing Uses Recursion

def count_leaves(t):

"""Count the leaves of a tree.

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

def count_leaves(t):

"""Count the leaves of a tree.

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

def count_leaves(t):
"""Count the leaves of a tree."""
if is_leaf(t):

return 1

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

def count_leaves(t):
"""Count the leaves of a tree."""
if is_leaf(t):

return 1

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

def count_leaves(t):

"""Count the leaves of a tree."""
if is_leaf(t):

return 1
else:

branch_counts = [count_leaves(b) for b in branches(t)]

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

def count_leaves(t):
"""Count the leaves of a tree."""
if is_leaf(t):
return 1
else:
branch_counts = [count_leaves(b) for b in branches(t)]

return sum(branch_counts)

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

def count_leaves(t):
"""Count the leaves of a tree."""
if is_leaf(t):
return 1
else:
branch_counts = [count_leaves(b) for b in branches(t)]

return sum(branch_counts)

(Demo)

Discussion Question

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

def leaves(tree):
"""Return a list containing the leaf labels of tree.

>>> leaves(fib_tree(5))
[1, o, 1, 0, 1, 1, 0, 1]

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

def leaves(tree):
"""Return a list containing the leaf labels of tree.

>>> leaves(fib_tree(5))
[1, o, 1, 0, 1, 1, 0, 1]

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

>>> sum([[1], [2, 3], [4] |, []1) def leaves(tree):
"""Return a list containing the leaf labels of tree.

>>> leaves(fib_tree(5))
[1, o, 1, 0, 1, 1, 0, 1]

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

>>> sum([[1], [2, 3], [4] |, []1) def leaves(tree):
[1, 2, 3, 4] """Return a list containing the leaf labels of tree.

>>> leaves(fib_tree(5))
[1, o, 1, 0, 1, 1, 0, 1]

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

>>> sum([[1], [2, 3], [4] |, []1) def leaves(tree):
[1, 2, 3, 4] """Return a list containing the leaf labels of tree.
>>> sum([[1] 1, [1])

>>> leaves(fib_tree(5))

[1, o, 1, 0, 1, 1, 0, 1]

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

>>> sum([[1], [2, 3], [4] |, []1) def leaves(tree):

[1, 2, 3, 4] """Return a list containing the leaf labels of tree.
>>> sum([[1] 1, [1])
[1] >>> leaves(fib_tree(5))

[1, o, 1, 0, 1, 1, 0, 1]

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

>>> sum([[1], [2, 3], [4] |, []1) def leaves(tree):

[1, 2, 3, 4] """Return a list containing the leaf labels of tree.
>>> sum([[1] 1, [1])
[1] >>> leaves(fib_tree(5))

>>> sum([[[1]], [2]]p [1) [1r e, 1, o0, 1, 1, O, 1]

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

>>> sum([[1], [2, 3], [4] |, []1) def leaves(tree):

[1, 2, 3, 4] """Return a list containing the leaf labels of tree.
>>> sum([[1] 1, [1])
[1] >>> leaves(fib_tree(5))

>>> SUm([[[1]], [2]]p []) [1r 0; 1; Qr 1; 1; Qp 1]
[[1]' 2] 1mninn

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

>>> sum([[1], [2, 3], [4] |, []1) def leaves(tree):

[1, 2, 3, 4] """Return a list containing the leaf labels of tree.
>>> sum([[1] 1, [1])
[1] >>> leaves(fib_tree(5))

>>> SUm([[[1]], [2]]p []) [1r 0; 1; Qr 1; 1; Qp 1]
[[1]' 2] 1mninn

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

>>> sum([[1], [2, 3], [4] |, []1) def leaves(tree):

[1, 2, 3, 4] """Return a list containing the leaf labels of tree.
>>> sum([[1] 1, [])

[1] >>> leaves(fib_tree(5))

>>> sum([[[1]11, [2] 1, []) (1, 0, 1, 0, 1, 1, 0, 1]

[[1], 2] e
if is_leaf(tree):
return [label(tree)]
else:
return sum(, [1)

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

>>> sum([[1], [2, 31, [4]1 1, []) def leaves(tree):

[1, 2, 3, 4] """Return a list containing the leaf labels of tree.
>>> sum([[1] 1, [1)

[1] >>> leaves(fib_tree(5))

>>> sum([[[1]1], [2]1 1, [1) (1, o, 1, 0, 1, 1, 0, 1]

[[1]' 2] 1mmini
if is_leaf(tree):
return [label(tree)]

else:
return sum(, [1)
branches(tree) [b for b in branches(tree)]
leaves(tree) [s for s in leaves(tree)]
[branches(b) for b in branches(tree)] [branches(s) for s in leaves(tree)]

[leaves(b) for b in branches(tree)] [leaves(s) for s in leaves(tree)]

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

>>> sum([[1], [2, 31, [4]1 1, []) def leaves(tree):

[1, 2, 3, 4] """Return a list containing the leaf labels of tree.
>>> sum([[1] 1, [1)

[1] >>> leaves(fib_tree(5))

>>> sum([[[1]1], [2]1 1, [1) (1, o, 1, 0, 1, 1, 0, 1]

[[1]' 2] 1mmini
if is_leaf(tree):
return [label(tree)]

else:
return sum(List of leaf labels for each branch , [1)

branches(tree) [b for b in branches(tree)]
leaves(tree) [s for s in leaves(tree)]
[branches(b) for b in branches(tree)] [branches(s) for s in leaves(tree)]

[leaves(b) for b in branches(tree)] [leaves(s) for s in leaves(tree)]

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

>>> sum([[1], [2, 31, [4]1 1, []) def leaves(tree):

[1, 2, 3, 4] """Return a list containing the leaf labels of tree.
>>> sum([[1] 1, [1)

[1] >>> leaves(fib_tree(5))

>>> sum([[[1]1], [2]1 1, [1) (1, o, 1, 0, 1, 1, 0, 1]

[[1]' 2] 1mmini
if is_leaf(tree):
return [label(tree)]

else:
return sum(List of leaf labels for each branch , [1)

branches(tree) [b for b in branches(tree)]
leaves(tree) [s for s in leaves(tree)]
[branches(b) for b in branches(tree)] [branches(s) for s in leaves(tree)]

[leaves(b) for b in branches(tree)] [leaves(s) for s in leaves(tree)]

Creating Trees

Creating Trees

A function that creates a tree from another tree is typically also recursive

Creating Trees

A function that creates a tree from another tree is typically also recursive

def increment_leaves(t):
"""M"Return a tree like t but with leaf labels incremented."""

Creating Trees

A function that creates a tree from another tree is typically also recursive

def increment_leaves(t):
"""Return a tree like t but with leaf labels incremented."""
if is_leaf(t):
return tree(label(t) + 1)

Creating Trees

A function that creates a tree from another tree is typically also recursive

def increment_leaves(t):
"""M"Return a tree like t but with leaf labels incremented."""

if is_leaf(t):
return tree(label(t) + 1)

else:
bs = [increment_leaves(b) for b in branches(t)]

return tree(label(t), bs)

Creating Trees

A function that creates a tree from another tree is typically also recursive

def increment_leaves(t):
"""Return a tree like t but with leaf labels incremented.'""
if is_leaf(t):
return tree(label(t) + 1)
else:
bs = [increment_leaves(b) for b in branches(t)]
return tree(label(t), bs)

def increment(t):
""UReturn a tree like t but with all labels incremented."""

Creating Trees

A function that creates a tree from another tree is typically also recursive

def increment_leaves(t):
"""Return a tree like t but with leaf labels incremented.'""
if is_leaf(t):
return tree(label(t) + 1)
else:
bs = [increment_leaves(b) for b in branches(t)]
return tree(label(t), bs)

def increment(t):
""UReturn a tree like t but with all labels incremented."""

return tree(label(t) + 1, [increment(b) for b in branches(t)])

Example: Printing Trees

(Demo)

Example: Summing Paths

(Demo)

Example: Counting Paths

Count Paths that have a Total Label Sum

def count_paths(t, total):

"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1,

>>> count_paths(t,
z>> count_paths(t,
§>> count_paths(t,
S>> count_paths(t,
%>> count_paths(t,

if

3)
4)
5)
6)

7)

found =

else:

return found +

([

[tree(2,

[tree(1)]), tree(3)]), tree(1l, [tree(-1)])1)

3
-1 1 1
SN
2 3

for b in branches(t)])

Count Paths that have a Total Label Sum

def count_paths(t, total):

"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1,
>>> count_paths(t, 3)

z>> count_paths(t, 4)

§>> count_paths(t, 5)

S>> count_paths(t, 6)

%» count_paths(t, 7)<

if

found =

else:

return found + ([

[tree(2,

[tree(1)]), tree(3)]), tree(1l, [tree(-1)])1)

3
-1 1 1
/N
2 3

for b in branches(t)])

Count Paths that have a Total Label Sum

def count_paths(t, total):

"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1,
>>> count_paths(t, 3)

z>> count_paths(t, 4)

§>> count_paths(t, 5)

S>> count_paths(t, 6)

%» count_paths(t, 7)<

if

found =

else:

return found + ([

[tree(2,

[tree(1)]), tree(3)]), tree(1l, [tree(-1)])1)

3
-1 1] 1
AN
2 3

for b in branches(t)])

Count Paths that have a Total Label Sum

def count_paths(t, total):

"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1,
>>> count_paths(t, 3)

z>> count_paths(t, 4)

§>> count_paths(t, 5)

S>> count_paths(t, 6)

%» count_paths(t, 7)<

if

found =

else:

return found + ([

[tree(2,

[tree(1)]), tree(3)]), tree(1l, [tree(-1)])1)

EX
-1 i1 1
2 . 3

for b in branches(t)])

Count Paths that have a Total Label Sum

def count_paths(t, total):

"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1,
>>> count_paths(t, 3)

z>> count_paths(t, 4)<

§>> count_paths(t, 5)

S>> count_paths(t, 6)

%>> count_paths(t, 7)

if

found =

else:

return found + ([

[tree(2,

[tree(1)]), tree(3)]), tree(1l, [tree(-1)])1)

3
-1 1 1
/N
2 3

for b in branches(t)])

Count Paths that have a Total Label Sum

def count_paths(t, total):

"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1,
>>> count_paths(t, 3)

3» count_paths(t, 4)<

z>> count_paths(t, 5)

S>> count_paths(t, 6)

%>> count_paths(t, 7)

if

found =

else:

return found + ([

[tree(2,

[tree(1)]), tree(3)]), tree(1l, [tree(-1)])1)

........

-1 i1 1‘;
N
1

for b in branches(t)])

Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)1)I])
>>> count_paths(t, 3)<

2

>>> count_paths(t, 4) 3

2
>>> count_paths(t, 5) ,///// \\\\\
0

>>> count_paths(t, 6) -1 1 1
1
>>> count_paths(t, 7) / N ‘

T 2 3
if : |

found = 1

else:

return found + ([for b in branches(t)])

Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1l, [tree(-1)1)1)
>>> count_paths(t, 3)<

2

>>> count_paths(t, 4) w3

2
>>> count_paths(t, 5) ,///// \\\\\
0

>>> count_paths(t, 6) -1 1 1
1
>>> count_paths(t, 7) / N ‘

2 2 3
if . \

found = 1

else:

return found + ([for b in branches(t)])

Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1l, [tree(-1)1)1)
>>> count_paths(t, 3)<

2 R .

>>> count_paths(t, 4) {3 PN

2 .. \’s
>>> count_paths(t, 5) ,///// \# \\\\\~
0

1

>>> count_paths(t, 6) -1
1
>>> count_paths(t, 7) / N ‘

2 2 3
if : ‘

found = 1

else:

return found + ([for b in branches(t)])

Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1l, [tree(-1)1)1)
>>> count_paths(t, 3)<

2 nIiilil

>>> count_paths(t, 4) 130

2 ST

>>> count_paths(t, 5) ////// “# \\\\\\\

0

>>> count_paths(t, 6) -1 1 . 1

1

>>> count_paths(t, 7) / N ‘

%IIII 2 3 : 1

if label(t) == total: ‘ _________
found = 1

else:

return found + ([for b in branches(t)])

Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1l, [tree(-1)1)1)
>>> count_paths(t, 3)<

2 nIiilil

>>> count_paths(t, 4) 130

2 ST

>>> count_paths(t, 5) ////// “# \\\\\\\

0

>>> count_paths(t, 6) -1 1 . 1

1

>>> count_paths(t, 7) / N ‘

%IIII 2 3 : 1

if label(t) == total: ‘ _________
found = 1 1

else:

return found + ([for b in branches(t)])

Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1l, [tree(-1)1)1)
>>> count_paths(t, 3)<

z>> count_paths(t, 4) 513
§>> count_paths(t, 5) //////‘x*#‘ \\\;:\\‘
S>> count_paths(t, 6) -1 1 \x\~ 1 ‘
i>> count_paths(t, 7) / AN ‘E ‘
2 2 3 ’_1
if label(t) == total,
found = 1 1
else:
found = 0

return found + ([for b in branches(t)])

Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1l, [tree(-1)1)1)
>>> count_paths(t, 3)<

z>> count_paths(t, 4) 513
§>> count_paths(t, 5) //////‘x*#‘ \\\;:\\‘
S>> count_paths(t, 6) -1 1 \x\~ 1 ‘
i>> count_paths(t, 7) / AN ‘E ‘
2 2 3 ’_1
if label(t) == total,
found = 1 1
else:
found = 0

return found + sum ([for b in branches(t)])

Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1l, [tree(-1)1)1)
>>> count_paths(t, 3)<

z>> count_paths(t, 4) 513
§>> count_paths(t, 5) //////‘x*#‘ \\\;:x\‘
S>> count_paths(t, 6) -1 1 \x\~ 1
i>> count_paths(t, 7) / AN ‘E ‘
2 2 3 ’_1
if label(t) == total,
found = 1 1
else:
found = 0

return found + sum ([_count_paths(b, total - label(t)) for b in branches(t)])

