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    """Return a tree like t but with all labels incremented."""
    return tree(label(t) + 1, [increment(b) for b in branches(t)])

def increment_leaves(t):
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    if is_leaf(t):
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Count Paths that have a Total Label Sum
def count_paths(t, total): 
    """Return the number of paths from the root to any node in tree t  
    for which the labels along the path sum to total. 

    >>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)])]) 
    >>> count_paths(t, 3) 
    2 
    >>> count_paths(t, 4)  
    2 
    >>> count_paths(t, 5) 
    0 
    >>> count_paths(t, 6) 
    1 
    >>> count_paths(t, 7) 
    2 
    """ 
    if _________________: 

        found = ________________ 

    else: 

        ________________________ 

    return found + _________([__________________________________ for b in branches(t)])
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