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A function that creates a tree from another tree is typically also recursive

def increment_leaves(t):
"""Return a tree like t but with leaf labels incremented.'""
if is_leaf(t):
return tree(label(t) + 1)
else:
bs = [increment_leaves(b) for b in branches(t)]
return tree(label(t), bs)

def increment(t):
""UReturn a tree like t but with all labels incremented."""

return tree(label(t) + 1, [increment(b) for b in branches(t)])
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def count_paths(t, total):

"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.
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Count Paths that have a Total Label Sum

def count_paths(t, total):

"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1,
>>> count_paths(t, 3)

z>> count_paths(t, 4)<
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Count Paths that have a Total Label Sum

def count_paths(t, total):

"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1,
>>> count_paths(t, 3)
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z>> count_paths(t, 5)

S>> count_paths(t, 6)
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Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)1)I])
>>> count_paths(t, 3)<
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Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1l, [tree(-1)1)1)
>>> count_paths(t, 3)<
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Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1l, [tree(-1)1)1)
>>> count_paths(t, 3)<
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Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1l, [tree(-1)1)1)
>>> count_paths(t, 3)<
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Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1l, [tree(-1)1)1)
>>> count_paths(t, 3)<
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0
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if label(t) == total: ‘ _________
found = 1 1
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Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1l, [tree(-1)1)1)
>>> count_paths(t, 3)<

z>> count_paths(t, 4) 513
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i>> count_paths(t, 7) / AN ‘E ‘
2 2 3 ’_1
if label(t) == total,
found = 1 1
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found = 0

return found + ([ for b in branches(t)])




Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1l, [tree(-1)1)1)
>>> count_paths(t, 3)<

z>> count_paths(t, 4) 513
§>> count_paths(t, 5) //////‘x*#‘ \\\;:\\‘
S>> count_paths(t, 6) -1 1 \x\~ 1 ‘
i>> count_paths(t, 7) / AN ‘E ‘
2 2 3 ’_1
if label(t) == total,
found = 1 1
else:
found = 0

return found + sum ([ for b in branches(t)])




Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1l, [tree(-1)1)1)
>>> count_paths(t, 3)<

z>> count_paths(t, 4) 513
§>> count_paths(t, 5) //////‘x*#‘ \\\;:x\‘
S>> count_paths(t, 6) -1 1 \x\~ 1
i>> count_paths(t, 7) / AN ‘E ‘
2 2 3 ’_1
if label(t) == total,
found = 1 1
else:
found = 0

return found + sum ([ _count_paths(b, total - label(t)) for b in branches(t)])




