
Trees

Announcements

Trees

Tree Abstraction

4

2

3

1

0 1 1 1

0 1

Tree Abstraction

4

Recursive description (wooden trees):

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Branch

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Branch

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Branch
(also a tree)

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Branch
(also a tree)

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Root of the whole tree

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Root of the whole tree

Root of a branch

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Nodes
Root of the whole tree

Root of a branch

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Nodes
Root of the whole tree

Root of a branch

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes
Root of the whole tree

Root of a branch

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes
Root of the whole tree

Root of a branch

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes
Root of the whole tree

Root of a branch

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes
Root of the whole tree

Root of a branch

 or Root Node

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes

People often refer to labels by their locations: "each parent is the sum of its children"

Root of the whole tree

Root of a branch

 or Root Node

Tree Abstraction

4

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes

People often refer to labels by their locations: "each parent is the sum of its children"

Root of the whole tree

Root of a branch

Path

 or Root Node

Implementing the Tree Abstraction

5

Implementing the Tree Abstraction

• A tree has a root label
and a list of branches

• Each branch is a tree

5

Implementing the Tree Abstraction

• A tree has a root label
and a list of branches

• Each branch is a tree

5

2

1

3

1

1

Implementing the Tree Abstraction

• A tree has a root label
and a list of branches

• Each branch is a tree

5

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])

2

1

3

1

1

Implementing the Tree Abstraction

• A tree has a root label
and a list of branches

• Each branch is a tree

5

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Implementing the Tree Abstraction

• A tree has a root label
and a list of branches

• Each branch is a tree

5

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(label, branches=[]):

Implementing the Tree Abstraction

• A tree has a root label
and a list of branches

• Each branch is a tree

5

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(label, branches=[]):
 return [label] + branches

Implementing the Tree Abstraction

• A tree has a root label
and a list of branches

• Each branch is a tree

5

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(label, branches=[]):
 return [label] + branches

def label(tree):

Implementing the Tree Abstraction

• A tree has a root label
and a list of branches

• Each branch is a tree

5

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(label, branches=[]):
 return [label] + branches

def label(tree):
 return tree[0]

Implementing the Tree Abstraction

• A tree has a root label
and a list of branches

• Each branch is a tree

5

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(label, branches=[]):
 return [label] + branches

def label(tree):
 return tree[0]

def branches(tree):

Implementing the Tree Abstraction

• A tree has a root label
and a list of branches

• Each branch is a tree

5

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(label, branches=[]):
 return [label] + branches

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

Implementing the Tree Abstraction

6

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

def tree(label, branches=[]): • A tree has a root label
and a list of branches

• Each branch is a tree

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Implementing the Tree Abstraction

6

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)

Creates a list
from a sequence

of branches

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

def tree(label, branches=[]): • A tree has a root label
and a list of branches

• Each branch is a tree

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Implementing the Tree Abstraction

6

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)

Creates a list
from a sequence

of branches

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

def tree(label, branches=[]):
Verifies the

tree definition

• A tree has a root label
and a list of branches

• Each branch is a tree

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Implementing the Tree Abstraction

6

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)

Creates a list
from a sequence

of branches

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

def is_tree(tree):
 if type(tree) != list or len(tree) < 1:
 return False
 for branch in branches(tree):
 if not is_tree(branch):
 return False
 return True

def tree(label, branches=[]):
Verifies the

tree definition

• A tree has a root label
and a list of branches

• Each branch is a tree

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Implementing the Tree Abstraction

6

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)

Verifies that
tree is bound

to a list

Creates a list
from a sequence

of branches

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

def is_tree(tree):
 if type(tree) != list or len(tree) < 1:
 return False
 for branch in branches(tree):
 if not is_tree(branch):
 return False
 return True

def tree(label, branches=[]):
Verifies the

tree definition

• A tree has a root label
and a list of branches

• Each branch is a tree

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Implementing the Tree Abstraction

6

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)

def is_leaf(tree):
 return not branches(tree)

Verifies that
tree is bound

to a list

Creates a list
from a sequence

of branches

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

def is_tree(tree):
 if type(tree) != list or len(tree) < 1:
 return False
 for branch in branches(tree):
 if not is_tree(branch):
 return False
 return True

def tree(label, branches=[]):
Verifies the

tree definition

• A tree has a root label
and a list of branches

• Each branch is a tree

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Implementing the Tree Abstraction

(Demo)

6

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)

def is_leaf(tree):
 return not branches(tree)

Verifies that
tree is bound

to a list

Creates a list
from a sequence

of branches

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

def is_tree(tree):
 if type(tree) != list or len(tree) < 1:
 return False
 for branch in branches(tree):
 if not is_tree(branch):
 return False
 return True

def tree(label, branches=[]):
Verifies the

tree definition

• A tree has a root label
and a list of branches

• Each branch is a tree

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Tree Processing

Tree Processing

(Demo)

Tree Processing Uses Recursion

8

Tree Processing Uses Recursion

8

def count_leaves(t):

 """Count the leaves of a tree."""

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

8

def count_leaves(t):

 """Count the leaves of a tree."""

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

8

def count_leaves(t):

 """Count the leaves of a tree."""

 if is_leaf(t):

 return 1

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

8

def count_leaves(t):

 """Count the leaves of a tree."""

 if is_leaf(t):

 return 1

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

8

def count_leaves(t):

 """Count the leaves of a tree."""

 if is_leaf(t):

 return 1

 else:

 branch_counts = [count_leaves(b) for b in branches(t)]

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

8

def count_leaves(t):

 """Count the leaves of a tree."""

 if is_leaf(t):

 return 1

 else:

 branch_counts = [count_leaves(b) for b in branches(t)]

 return sum(branch_counts)

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

8

(Demo)

def count_leaves(t):

 """Count the leaves of a tree."""

 if is_leaf(t):

 return 1

 else:

 branch_counts = [count_leaves(b) for b in branches(t)]

 return sum(branch_counts)

Discussion Question

9

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

9

def leaves(tree):
 """Return a list containing the leaf labels of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

9

def leaves(tree):
 """Return a list containing the leaf labels of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

9

def leaves(tree):
 """Return a list containing the leaf labels of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

9

>>> sum([[1], [2, 3], [4]], [])

def leaves(tree):
 """Return a list containing the leaf labels of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

9

>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]

def leaves(tree):
 """Return a list containing the leaf labels of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

9

>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]
>>> sum([[1]], [])

def leaves(tree):
 """Return a list containing the leaf labels of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

9

>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]
>>> sum([[1]], [])
[1]

def leaves(tree):
 """Return a list containing the leaf labels of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

9

>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]
>>> sum([[1]], [])
[1]
>>> sum([[[1]], [2]], [])

def leaves(tree):
 """Return a list containing the leaf labels of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

9

>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]
>>> sum([[1]], [])
[1]
>>> sum([[[1]], [2]], [])
[[1], 2]

def leaves(tree):
 """Return a list containing the leaf labels of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

9

>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]
>>> sum([[1]], [])
[1]
>>> sum([[[1]], [2]], [])
[[1], 2]

def leaves(tree):
 """Return a list containing the leaf labels of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """
 if is_leaf(tree):
 return [label(tree)]
 else:
 return sum(______________________________, [])

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

9

>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]
>>> sum([[1]], [])
[1]
>>> sum([[[1]], [2]], [])
[[1], 2]

def leaves(tree):
 """Return a list containing the leaf labels of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """
 if is_leaf(tree):
 return [label(tree)]
 else:
 return sum(______________________________, [])

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

9

>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]
>>> sum([[1]], [])
[1]
>>> sum([[[1]], [2]], [])
[[1], 2]

branches(tree)

[branches(b) for b in branches(tree)]

leaves(tree)

[leaves(b) for b in branches(tree)]

[b for b in branches(tree)]

[branches(s) for s in leaves(tree)]

[s for s in leaves(tree)]

[leaves(s) for s in leaves(tree)]

def leaves(tree):
 """Return a list containing the leaf labels of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """
 if is_leaf(tree):
 return [label(tree)]
 else:
 return sum(______________________________, [])

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

9

>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]
>>> sum([[1]], [])
[1]
>>> sum([[[1]], [2]], [])
[[1], 2]

List of leaf labels for each branch

branches(tree)

[branches(b) for b in branches(tree)]

leaves(tree)

[leaves(b) for b in branches(tree)]

[b for b in branches(tree)]

[branches(s) for s in leaves(tree)]

[s for s in leaves(tree)]

[leaves(s) for s in leaves(tree)]

def leaves(tree):
 """Return a list containing the leaf labels of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """
 if is_leaf(tree):
 return [label(tree)]
 else:
 return sum(______________________________, [])

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

9

>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]
>>> sum([[1]], [])
[1]
>>> sum([[[1]], [2]], [])
[[1], 2]

List of leaf labels for each branch

branches(tree)

[branches(b) for b in branches(tree)]

leaves(tree)

[leaves(b) for b in branches(tree)]

[b for b in branches(tree)]

[branches(s) for s in leaves(tree)]

[s for s in leaves(tree)]

[leaves(s) for s in leaves(tree)]

Creating Trees

10

Creating Trees

A function that creates a tree from another tree is typically also recursive

10

Creating Trees

A function that creates a tree from another tree is typically also recursive

10

def increment_leaves(t):
 """Return a tree like t but with leaf labels incremented."""

Creating Trees

A function that creates a tree from another tree is typically also recursive

10

def increment_leaves(t):
 """Return a tree like t but with leaf labels incremented."""
 if is_leaf(t):
 return tree(label(t) + 1)

Creating Trees

A function that creates a tree from another tree is typically also recursive

10

def increment_leaves(t):
 """Return a tree like t but with leaf labels incremented."""
 if is_leaf(t):
 return tree(label(t) + 1)
 else:
 bs = [increment_leaves(b) for b in branches(t)]
 return tree(label(t), bs)

Creating Trees

A function that creates a tree from another tree is typically also recursive

10

def increment(t):
 """Return a tree like t but with all labels incremented."""

def increment_leaves(t):
 """Return a tree like t but with leaf labels incremented."""
 if is_leaf(t):
 return tree(label(t) + 1)
 else:
 bs = [increment_leaves(b) for b in branches(t)]
 return tree(label(t), bs)

Creating Trees

A function that creates a tree from another tree is typically also recursive

10

def increment(t):
 """Return a tree like t but with all labels incremented."""
 return tree(label(t) + 1, [increment(b) for b in branches(t)])

def increment_leaves(t):
 """Return a tree like t but with leaf labels incremented."""
 if is_leaf(t):
 return tree(label(t) + 1)
 else:
 bs = [increment_leaves(b) for b in branches(t)]
 return tree(label(t), bs)

Example: Printing Trees

(Demo)

Example: Summing Paths

(Demo)

Example: Counting Paths

Count Paths that have a Total Label Sum
def count_paths(t, total):
 """Return the number of paths from the root to any node in tree t
 for which the labels along the path sum to total.

 >>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)])])
 >>> count_paths(t, 3)
 2
 >>> count_paths(t, 4)
 2
 >>> count_paths(t, 5)
 0
 >>> count_paths(t, 6)
 1
 >>> count_paths(t, 7)
 2
 """
 if _________________:

 found = ________________

 else:

 return found + _________([__________________________________ for b in branches(t)])

2

3

-1 11

-1

1

3

Count Paths that have a Total Label Sum
def count_paths(t, total):
 """Return the number of paths from the root to any node in tree t
 for which the labels along the path sum to total.

 >>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)])])
 >>> count_paths(t, 3)
 2
 >>> count_paths(t, 4)
 2
 >>> count_paths(t, 5)
 0
 >>> count_paths(t, 6)
 1
 >>> count_paths(t, 7)
 2
 """
 if _________________:

 found = ________________

 else:

 return found + _________([__________________________________ for b in branches(t)])

2

3

-1 11

-1

1

3

Count Paths that have a Total Label Sum
def count_paths(t, total):
 """Return the number of paths from the root to any node in tree t
 for which the labels along the path sum to total.

 >>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)])])
 >>> count_paths(t, 3)
 2
 >>> count_paths(t, 4)
 2
 >>> count_paths(t, 5)
 0
 >>> count_paths(t, 6)
 1
 >>> count_paths(t, 7)
 2
 """
 if _________________:

 found = ________________

 else:

 return found + _________([__________________________________ for b in branches(t)])

2

3

-1 11

-1

1

3

Count Paths that have a Total Label Sum
def count_paths(t, total):
 """Return the number of paths from the root to any node in tree t
 for which the labels along the path sum to total.

 >>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)])])
 >>> count_paths(t, 3)
 2
 >>> count_paths(t, 4)
 2
 >>> count_paths(t, 5)
 0
 >>> count_paths(t, 6)
 1
 >>> count_paths(t, 7)
 2
 """
 if _________________:

 found = ________________

 else:

 return found + _________([__________________________________ for b in branches(t)])

2

3

-1 11

-1

1

3

Count Paths that have a Total Label Sum
def count_paths(t, total):
 """Return the number of paths from the root to any node in tree t
 for which the labels along the path sum to total.

 >>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)])])
 >>> count_paths(t, 3)
 2
 >>> count_paths(t, 4)
 2
 >>> count_paths(t, 5)
 0
 >>> count_paths(t, 6)
 1
 >>> count_paths(t, 7)
 2
 """
 if _________________:

 found = ________________

 else:

 return found + _________([__________________________________ for b in branches(t)])

2

3

-1 11

-1

1

3

Count Paths that have a Total Label Sum
def count_paths(t, total):
 """Return the number of paths from the root to any node in tree t
 for which the labels along the path sum to total.

 >>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)])])
 >>> count_paths(t, 3)
 2
 >>> count_paths(t, 4)
 2
 >>> count_paths(t, 5)
 0
 >>> count_paths(t, 6)
 1
 >>> count_paths(t, 7)
 2
 """
 if _________________:

 found = ________________

 else:

 return found + _________([__________________________________ for b in branches(t)])

2

3

-1 11

-1

1

3

Count Paths that have a Total Label Sum
def count_paths(t, total):
 """Return the number of paths from the root to any node in tree t
 for which the labels along the path sum to total.

 >>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)])])
 >>> count_paths(t, 3)
 2
 >>> count_paths(t, 4)
 2
 >>> count_paths(t, 5)
 0
 >>> count_paths(t, 6)
 1
 >>> count_paths(t, 7)
 2
 """
 if _________________:

 found = ________________

 else:

 return found + _________([__________________________________ for b in branches(t)])

2

3

-1 11

-1

1

3

Count Paths that have a Total Label Sum
def count_paths(t, total):
 """Return the number of paths from the root to any node in tree t
 for which the labels along the path sum to total.

 >>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)])])
 >>> count_paths(t, 3)
 2
 >>> count_paths(t, 4)
 2
 >>> count_paths(t, 5)
 0
 >>> count_paths(t, 6)
 1
 >>> count_paths(t, 7)
 2
 """
 if _________________:

 found = ________________

 else:

 return found + _________([__________________________________ for b in branches(t)])

2

3

-1 11

-1

1

3

Count Paths that have a Total Label Sum
def count_paths(t, total):
 """Return the number of paths from the root to any node in tree t
 for which the labels along the path sum to total.

 >>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)])])
 >>> count_paths(t, 3)
 2
 >>> count_paths(t, 4)
 2
 >>> count_paths(t, 5)
 0
 >>> count_paths(t, 6)
 1
 >>> count_paths(t, 7)
 2
 """
 if _________________:

 found = ________________

 else:

 return found + _________([__________________________________ for b in branches(t)])

2

3

-1 11

-1

1

3

Count Paths that have a Total Label Sum
def count_paths(t, total):
 """Return the number of paths from the root to any node in tree t
 for which the labels along the path sum to total.

 >>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)])])
 >>> count_paths(t, 3)
 2
 >>> count_paths(t, 4)
 2
 >>> count_paths(t, 5)
 0
 >>> count_paths(t, 6)
 1
 >>> count_paths(t, 7)
 2
 """
 if _________________:

 found = ________________

 else:

 return found + _________([__________________________________ for b in branches(t)])

label(t) == total

2

3

-1 11

-1

1

3

Count Paths that have a Total Label Sum
def count_paths(t, total):
 """Return the number of paths from the root to any node in tree t
 for which the labels along the path sum to total.

 >>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)])])
 >>> count_paths(t, 3)
 2
 >>> count_paths(t, 4)
 2
 >>> count_paths(t, 5)
 0
 >>> count_paths(t, 6)
 1
 >>> count_paths(t, 7)
 2
 """
 if _________________:

 found = ________________

 else:

 return found + _________([__________________________________ for b in branches(t)])

label(t) == total

1

2

3

-1 11

-1

1

3

Count Paths that have a Total Label Sum
def count_paths(t, total):
 """Return the number of paths from the root to any node in tree t
 for which the labels along the path sum to total.

 >>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)])])
 >>> count_paths(t, 3)
 2
 >>> count_paths(t, 4)
 2
 >>> count_paths(t, 5)
 0
 >>> count_paths(t, 6)
 1
 >>> count_paths(t, 7)
 2
 """
 if _________________:

 found = ________________

 else:

 return found + _________([__________________________________ for b in branches(t)])

label(t) == total

1

found = 0

2

3

-1 11

-1

1

3

Count Paths that have a Total Label Sum
def count_paths(t, total):
 """Return the number of paths from the root to any node in tree t
 for which the labels along the path sum to total.

 >>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)])])
 >>> count_paths(t, 3)
 2
 >>> count_paths(t, 4)
 2
 >>> count_paths(t, 5)
 0
 >>> count_paths(t, 6)
 1
 >>> count_paths(t, 7)
 2
 """
 if _________________:

 found = ________________

 else:

 return found + _________([__________________________________ for b in branches(t)])

label(t) == total

1

found = 0

sum

2

3

-1 11

-1

1

3

Count Paths that have a Total Label Sum
def count_paths(t, total):
 """Return the number of paths from the root to any node in tree t
 for which the labels along the path sum to total.

 >>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1, [tree(-1)])])
 >>> count_paths(t, 3)
 2
 >>> count_paths(t, 4)
 2
 >>> count_paths(t, 5)
 0
 >>> count_paths(t, 6)
 1
 >>> count_paths(t, 7)
 2
 """
 if _________________:

 found = ________________

 else:

 return found + _________([__________________________________ for b in branches(t)])

label(t) == total

1

found = 0

sum count_paths(b, total - label(t))

2

3

-1 11

-1

1

3

