
Iterators

Announcements

Iterators

Iterators

4

Iterators

4

A container can provide an iterator that provides access to its elements in order

Iterators

4

A container can provide an iterator that provides access to its elements in order

iter(iterable):

next(iterator):

Return an iterator over the elements
of an iterable value

Return the next element in an iterator

Iterators

4

A container can provide an iterator that provides access to its elements in order

iter(iterable):

next(iterator):

Return an iterator over the elements
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]

Iterators

4

A container can provide an iterator that provides access to its elements in order

iter(iterable):

next(iterator):

Return an iterator over the elements
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)

Iterators

4

A container can provide an iterator that provides access to its elements in order

iter(iterable):

next(iterator):

Return an iterator over the elements
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)

Iterators

4

A container can provide an iterator that provides access to its elements in order

iter(iterable):

next(iterator):

Return an iterator over the elements
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3

Iterators

4

A container can provide an iterator that provides access to its elements in order

iter(iterable):

next(iterator):

Return an iterator over the elements
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3

Iterators

4

A container can provide an iterator that provides access to its elements in order

iter(iterable):

next(iterator):

Return an iterator over the elements
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3
>>> next(t)
4

Iterators

4

A container can provide an iterator that provides access to its elements in order

iter(iterable):

next(iterator):

Return an iterator over the elements
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3
>>> next(t)
4
>>> u = iter(s)

Iterators

4

A container can provide an iterator that provides access to its elements in order

iter(iterable):

next(iterator):

Return an iterator over the elements
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3
>>> next(t)
4
>>> u = iter(s)
>>> next(u)
3

Iterators

4

A container can provide an iterator that provides access to its elements in order

iter(iterable):

next(iterator):

Return an iterator over the elements
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3
>>> next(t)
4
>>> u = iter(s)
>>> next(u)
3
>>> next(t)
5

Iterators

4

A container can provide an iterator that provides access to its elements in order

iter(iterable):

next(iterator):

Return an iterator over the elements
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3
>>> next(t)
4
>>> u = iter(s)
>>> next(u)
3
>>> next(t)
5
>>> next(u)
4

Iterators

4

A container can provide an iterator that provides access to its elements in order

iter(iterable):

next(iterator):

Return an iterator over the elements
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3
>>> next(t)
4
>>> u = iter(s)
>>> next(u)
3
>>> next(t)
5
>>> next(u)
4

(Demo)

Dictionary Iteration

Views of a Dictionary

6

Views of a Dictionary

6

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())
>>> next(v)
1

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())
>>> next(v)
1
>>> next(v)
2

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())
>>> next(v)
1
>>> next(v)
2
>>> next(v)
3
>>> next(v)
0

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())
>>> next(v)
1
>>> next(v)
2
>>> next(v)
3
>>> next(v)
0

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

>>> i = iter(d.items())

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())
>>> next(v)
1
>>> next(v)
2
>>> next(v)
3
>>> next(v)
0

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

>>> i = iter(d.items())
>>> next(i)
('one', 1)

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())
>>> next(v)
1
>>> next(v)
2
>>> next(v)
3
>>> next(v)
0

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

>>> i = iter(d.items())
>>> next(i)
('one', 1)
>>> next(i)
('two', 2)

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())
>>> next(v)
1
>>> next(v)
2
>>> next(v)
3
>>> next(v)
0

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

>>> i = iter(d.items())
>>> next(i)
('one', 1)
>>> next(i)
('two', 2)
>>> next(i)
('three', 3)
>>> next(i)
('zero', 0)

Views of a Dictionary

6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())
>>> next(v)
1
>>> next(v)
2
>>> next(v)
3
>>> next(v)
0

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

>>> i = iter(d.items())
>>> next(i)
('one', 1)
>>> next(i)
('two', 2)
>>> next(i)
('three', 3)
>>> next(i)
('zero', 0)

(Demo)

For Statements

(Demo)

Built-In Iterator Functions

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

9

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

9

map(func, iterable): Iterate over func(x) for x in iterable

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

9

map(func, iterable):

filter(func, iterable):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

9

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

9

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

9

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

9

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

list(iterable): Create a list containing all x in iterable

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

9

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

list(iterable):

tuple(iterable):

Create a list containing all x in iterable

Create a tuple containing all x in iterable

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

9

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

list(iterable):

tuple(iterable):

sorted(iterable):

Create a list containing all x in iterable

Create a tuple containing all x in iterable

Create a sorted list containing x in iterable

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

9

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

list(iterable):

tuple(iterable):

sorted(iterable):

Create a list containing all x in iterable

Create a tuple containing all x in iterable

Create a sorted list containing x in iterable

(Demo)

Zip

The Zip Function

11

The Zip Function

The built-in zip function returns an iterator over co-indexed tuples.

11

The Zip Function

The built-in zip function returns an iterator over co-indexed tuples.

>>> list(zip([1, 2], [3, 4]))
[(1, 3), (2, 4)]

11

The Zip Function

The built-in zip function returns an iterator over co-indexed tuples.

>>> list(zip([1, 2], [3, 4]))
[(1, 3), (2, 4)]

If one iterable is longer than the other, zip only iterates over matches and skips extras.

11

The Zip Function

The built-in zip function returns an iterator over co-indexed tuples.

>>> list(zip([1, 2], [3, 4]))
[(1, 3), (2, 4)]

If one iterable is longer than the other, zip only iterates over matches and skips extras.

>>> list(zip([1, 2], [3, 4, 5]))
[(1, 3), (2, 4)]

11

The Zip Function

The built-in zip function returns an iterator over co-indexed tuples.

>>> list(zip([1, 2], [3, 4]))
[(1, 3), (2, 4)]

If one iterable is longer than the other, zip only iterates over matches and skips extras.

>>> list(zip([1, 2], [3, 4, 5]))
[(1, 3), (2, 4)]

More than two iterables can be passed to zip.

11

The Zip Function

The built-in zip function returns an iterator over co-indexed tuples.

>>> list(zip([1, 2], [3, 4]))
[(1, 3), (2, 4)]

If one iterable is longer than the other, zip only iterates over matches and skips extras.

>>> list(zip([1, 2], [3, 4, 5]))
[(1, 3), (2, 4)]

More than two iterables can be passed to zip.

>>> list(zip([1, 2], [3, 4, 5], [6, 7]))
[(1, 3, 6), (2, 4, 7)]

11

The Zip Function

The built-in zip function returns an iterator over co-indexed tuples.

>>> list(zip([1, 2], [3, 4]))
[(1, 3), (2, 4)]

If one iterable is longer than the other, zip only iterates over matches and skips extras.

>>> list(zip([1, 2], [3, 4, 5]))
[(1, 3), (2, 4)]

More than two iterables can be passed to zip.

>>> list(zip([1, 2], [3, 4, 5], [6, 7]))
[(1, 3, 6), (2, 4, 7)]

Implement palindrome, which returns whether s is the same forward and backward.

11

The Zip Function

The built-in zip function returns an iterator over co-indexed tuples.

>>> list(zip([1, 2], [3, 4]))
[(1, 3), (2, 4)]

If one iterable is longer than the other, zip only iterates over matches and skips extras.

>>> list(zip([1, 2], [3, 4, 5]))
[(1, 3), (2, 4)]

More than two iterables can be passed to zip.

>>> list(zip([1, 2], [3, 4, 5], [6, 7]))
[(1, 3, 6), (2, 4, 7)]

Implement palindrome, which returns whether s is the same forward and backward.

>>> palindrome([3, 1, 4, 1, 3])
True
>>> palindrome([3, 1, 4, 1, 5])
False

11

The Zip Function

The built-in zip function returns an iterator over co-indexed tuples.

>>> list(zip([1, 2], [3, 4]))
[(1, 3), (2, 4)]

If one iterable is longer than the other, zip only iterates over matches and skips extras.

>>> list(zip([1, 2], [3, 4, 5]))
[(1, 3), (2, 4)]

More than two iterables can be passed to zip.

>>> list(zip([1, 2], [3, 4, 5], [6, 7]))
[(1, 3, 6), (2, 4, 7)]

Implement palindrome, which returns whether s is the same forward and backward.

>>> palindrome([3, 1, 4, 1, 3])
True
>>> palindrome([3, 1, 4, 1, 5])
False

11

>>> palindrome('seveneves')
True
>>> palindrome('seven eves')
False

Using Iterators

Reasons for Using Iterators

13

Reasons for Using Iterators

Code that processes an iterator (via next) or iterable (via for or iter) makes few
assumptions about the data itself.

13

Reasons for Using Iterators

Code that processes an iterator (via next) or iterable (via for or iter) makes few
assumptions about the data itself.

• Changing the data representation from a list to a tuple, map object, or dict_keys doesn't
require rewriting code.

13

Reasons for Using Iterators

Code that processes an iterator (via next) or iterable (via for or iter) makes few
assumptions about the data itself.

• Changing the data representation from a list to a tuple, map object, or dict_keys doesn't
require rewriting code.

• Others are more likely to be able to use your code on their data.

13

Reasons for Using Iterators

Code that processes an iterator (via next) or iterable (via for or iter) makes few
assumptions about the data itself.

• Changing the data representation from a list to a tuple, map object, or dict_keys doesn't
require rewriting code.

• Others are more likely to be able to use your code on their data.

An iterator bundles together a sequence and a position within that sequence as one object.

13

Reasons for Using Iterators

Code that processes an iterator (via next) or iterable (via for or iter) makes few
assumptions about the data itself.

• Changing the data representation from a list to a tuple, map object, or dict_keys doesn't
require rewriting code.

• Others are more likely to be able to use your code on their data.

An iterator bundles together a sequence and a position within that sequence as one object.

• Passing that object to another function always retains the position.

13

Reasons for Using Iterators

Code that processes an iterator (via next) or iterable (via for or iter) makes few
assumptions about the data itself.

• Changing the data representation from a list to a tuple, map object, or dict_keys doesn't
require rewriting code.

• Others are more likely to be able to use your code on their data.

An iterator bundles together a sequence and a position within that sequence as one object.

• Passing that object to another function always retains the position.

• Useful for ensuring that each element of a sequence is processed only once.

13

Reasons for Using Iterators

Code that processes an iterator (via next) or iterable (via for or iter) makes few
assumptions about the data itself.

• Changing the data representation from a list to a tuple, map object, or dict_keys doesn't
require rewriting code.

• Others are more likely to be able to use your code on their data.

An iterator bundles together a sequence and a position within that sequence as one object.

• Passing that object to another function always retains the position.

• Useful for ensuring that each element of a sequence is processed only once.

• Limits the operations that can be performed on the sequence to only requesting next.

13

Example: Casino Blackjack

14

Player:

Dealer:

Example: Casino Blackjack

14

Player:

Dealer:

Example: Casino Blackjack

14

Player:

Dealer:

Example: Casino Blackjack

14

Player:

Dealer:

Example: Casino Blackjack

14

Player:

Dealer:

Example: Casino Blackjack

14

Player:

Dealer:

Example: Casino Blackjack

14

Player:

Dealer:

Example: Casino Blackjack

14

Player:

Dealer:

Example: Casino Blackjack

14

Player:

Dealer:

Example: Casino Blackjack

14

Player:

Dealer:

(Demo)

