
Representation

Announcements

String Representations

String Representations

An object value should behave like the kind of data it is meant to represent

For instance, by producing a string representation of itself

Strings are important: they represent language and programs

In Python, all objects produce two string representations:

• The str is legible to humans

• The repr is legible to the Python interpreter

The str and repr strings are often the same, but not always

4

The repr String for an Object

The result of calling repr on a value is what Python prints in an interactive session

>>> 12e12
12000000000000.0
>>> print(repr(12e12))
12000000000000.0

Some objects do not have a simple Python-readable string

repr(object) -> string

Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.

The repr function returns a Python expression (a string) that evaluates to an equal object

>>> repr(min)
'<built-in function min>'

5

The str String for an Object

Human interpretable strings are useful as well:

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> repr(half)
'Fraction(1, 2)'
>>> str(half)
'1/2'

(Demo)

The result of calling str on the value of an expression is what Python prints
using the print function:

6

>>> print(half)
1/2

F-Strings

String Interpolation in Python

String interpolation involves evaluating a string literal that contains expressions.

Using string concatenation:

>>> from math import pi
>>> 'pi starts with ' + str(pi) + '...'
'pi starts with 3.141592653589793...'

>>> print('pi starts with ' + str(pi) + '...')
pi starts with 3.141592653589793...

Using string interpolation:

>>> f'pi starts with {pi}...'
'pi starts with 3.141592653589793...'

>>> print(f'pi starts with {pi}...')
pi starts with 3.141592653589793...

8

The result of evaluating an f-string
literal contains the str string of the
value of each sub-expression.

Sub-expressions are evaluated in the
current environment.

(Demo)

Polymorphic Functions

Polymorphic Functions

Polymorphic function: A function that applies to many (poly) different forms (morph) of data

str and repr are both polymorphic; they apply to any object

repr invokes a zero-argument method __repr__ on its argument

str invokes a zero-argument method __str__ on its argument

>>> half.__repr__()
'Fraction(1, 2)'

>>> half.__str__()
'1/2'

10

Implementing repr and str

The behavior of repr is slightly more complicated than invoking __repr__ on its argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found

• Question: How would we implement this behavior?

11

(Demo)

def repr(x):
 return type(x).__repr__(x)

def repr(x):
 return x.__repr__(x)

def repr(x):
 return x.__repr__()

def repr(x):
 return type(x).__repr__()

def repr(x):
 return super(x).__repr__()

The behavior of str is also complicated:

• An instance attribute called __str__ is ignored

• If no __str__ attribute is found, uses repr string

• (By the way, str is a class, not a function)

• Question: How would we implement this behavior?

Interfaces

Message passing: Objects interact by looking up attributes on each other (passing messages)

The attribute look-up rules allow different data types to respond to the same message

A shared message (attribute name) that elicits similar behavior from different object
classes is a powerful method of abstraction

An interface is a set of shared messages, along with a specification of what they mean

Example:

Classes that implement __repr__ and __str__ methods that return Python-interpretable and
human-readable strings implement an interface for producing string representations

12

(Demo)

Special Method Names

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

__float__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Method invoked to add one object to another

Method invoked to convert an object to True or False

Method invoked to convert an object to a float (real number)

>>> zero, one, two = 0, 1, 2
>>> one + two
3
>>> bool(zero), bool(one)
(False, True)

>>> zero, one, two = 0, 1, 2
>>> one.__add__(two)
3
>>> zero.__bool__(), one.__bool__()
(False, True)

Same
behavior
using

methods

Special Methods

Adding instances of user-defined classes invokes either the __add__ or __radd__ method

>>> Ratio(1, 3) + Ratio(1, 6)
Ratio(1, 2)

15

http://docs.python.org/py3k/reference/datamodel.html#special-method-names

http://getpython3.com/diveintopython3/special-method-names.html

>>> Ratio(1, 3).__add__(Ratio(1, 6))
Ratio(1, 2)

>>> Ratio(1, 6).__radd__(Ratio(1, 3))
Ratio(1, 2)

(Demo)

Generic Functions

A polymorphic function might take two or more arguments of different types

Type Dispatching: Inspect the type of an argument in order to select behavior

Type Coercion: Convert one value to match the type of another

16

(Demo)

>>> Ratio(1, 3) + 1
Ratio(4, 3)

>>> 1 + Ratio(1, 3)
Ratio(4, 3)

>>> from math import pi
>>> Ratio(1, 3) + pi
3.4749259869231266

