
Representation

Announcements

String Representations

String Representations

4

String Representations

An object value should behave like the kind of data it is meant to represent

4

String Representations

An object value should behave like the kind of data it is meant to represent

For instance, by producing a string representation of itself

4

String Representations

An object value should behave like the kind of data it is meant to represent

For instance, by producing a string representation of itself

Strings are important: they represent language and programs

4

String Representations

An object value should behave like the kind of data it is meant to represent

For instance, by producing a string representation of itself

Strings are important: they represent language and programs

In Python, all objects produce two string representations:

4

String Representations

An object value should behave like the kind of data it is meant to represent

For instance, by producing a string representation of itself

Strings are important: they represent language and programs

In Python, all objects produce two string representations:

• The str is legible to humans

4

String Representations

An object value should behave like the kind of data it is meant to represent

For instance, by producing a string representation of itself

Strings are important: they represent language and programs

In Python, all objects produce two string representations:

• The str is legible to humans

• The repr is legible to the Python interpreter

4

String Representations

An object value should behave like the kind of data it is meant to represent

For instance, by producing a string representation of itself

Strings are important: they represent language and programs

In Python, all objects produce two string representations:

• The str is legible to humans

• The repr is legible to the Python interpreter

The str and repr strings are often the same, but not always

4

The repr String for an Object

5

The repr String for an Object

The repr function returns a Python expression (a string) that evaluates to an equal object

5

The repr String for an Object

repr(object) -> string

Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.

The repr function returns a Python expression (a string) that evaluates to an equal object

5

The repr String for an Object

The result of calling repr on a value is what Python prints in an interactive session

repr(object) -> string

Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.

The repr function returns a Python expression (a string) that evaluates to an equal object

5

The repr String for an Object

The result of calling repr on a value is what Python prints in an interactive session

>>> 12e12

repr(object) -> string

Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.

The repr function returns a Python expression (a string) that evaluates to an equal object

5

The repr String for an Object

The result of calling repr on a value is what Python prints in an interactive session

>>> 12e12
12000000000000.0

repr(object) -> string

Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.

The repr function returns a Python expression (a string) that evaluates to an equal object

5

The repr String for an Object

The result of calling repr on a value is what Python prints in an interactive session

>>> 12e12
12000000000000.0
>>> print(repr(12e12))

repr(object) -> string

Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.

The repr function returns a Python expression (a string) that evaluates to an equal object

5

The repr String for an Object

The result of calling repr on a value is what Python prints in an interactive session

>>> 12e12
12000000000000.0
>>> print(repr(12e12))
12000000000000.0

repr(object) -> string

Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.

The repr function returns a Python expression (a string) that evaluates to an equal object

5

The repr String for an Object

The result of calling repr on a value is what Python prints in an interactive session

>>> 12e12
12000000000000.0
>>> print(repr(12e12))
12000000000000.0

Some objects do not have a simple Python-readable string

repr(object) -> string

Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.

The repr function returns a Python expression (a string) that evaluates to an equal object

5

The repr String for an Object

The result of calling repr on a value is what Python prints in an interactive session

>>> 12e12
12000000000000.0
>>> print(repr(12e12))
12000000000000.0

Some objects do not have a simple Python-readable string

repr(object) -> string

Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.

The repr function returns a Python expression (a string) that evaluates to an equal object

>>> repr(min)
'<built-in function min>'

5

The str String for an Object

Human interpretable strings are useful as well:

6

The str String for an Object

Human interpretable strings are useful as well:

>>> from fractions import Fraction

6

The str String for an Object

Human interpretable strings are useful as well:

>>> from fractions import Fraction
>>> half = Fraction(1, 2)

6

The str String for an Object

Human interpretable strings are useful as well:

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> repr(half)

6

The str String for an Object

Human interpretable strings are useful as well:

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> repr(half)
'Fraction(1, 2)'

6

The str String for an Object

Human interpretable strings are useful as well:

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> repr(half)
'Fraction(1, 2)'
>>> str(half)

6

The str String for an Object

Human interpretable strings are useful as well:

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> repr(half)
'Fraction(1, 2)'
>>> str(half)
'1/2'

6

The str String for an Object

Human interpretable strings are useful as well:

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> repr(half)
'Fraction(1, 2)'
>>> str(half)
'1/2'

The result of calling str on the value of an expression is what Python prints
using the print function:

6

The str String for an Object

Human interpretable strings are useful as well:

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> repr(half)
'Fraction(1, 2)'
>>> str(half)
'1/2'

The result of calling str on the value of an expression is what Python prints
using the print function:

6

>>> print(half)

The str String for an Object

Human interpretable strings are useful as well:

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> repr(half)
'Fraction(1, 2)'
>>> str(half)
'1/2'

The result of calling str on the value of an expression is what Python prints
using the print function:

6

>>> print(half)
1/2

The str String for an Object

Human interpretable strings are useful as well:

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> repr(half)
'Fraction(1, 2)'
>>> str(half)
'1/2'

(Demo)

The result of calling str on the value of an expression is what Python prints
using the print function:

6

>>> print(half)
1/2

F-Strings

String Interpolation in Python

8

String Interpolation in Python

String interpolation involves evaluating a string literal that contains expressions.

8

String Interpolation in Python

String interpolation involves evaluating a string literal that contains expressions.

Using string concatenation:

8

String Interpolation in Python

String interpolation involves evaluating a string literal that contains expressions.

Using string concatenation:

>>> from math import pi
>>> 'pi starts with ' + str(pi) + '...'
'pi starts with 3.141592653589793...'

8

String Interpolation in Python

String interpolation involves evaluating a string literal that contains expressions.

Using string concatenation:

>>> from math import pi
>>> 'pi starts with ' + str(pi) + '...'
'pi starts with 3.141592653589793...'

>>> print('pi starts with ' + str(pi) + '...')
pi starts with 3.141592653589793...

8

String Interpolation in Python

String interpolation involves evaluating a string literal that contains expressions.

Using string concatenation:

>>> from math import pi
>>> 'pi starts with ' + str(pi) + '...'
'pi starts with 3.141592653589793...'

>>> print('pi starts with ' + str(pi) + '...')
pi starts with 3.141592653589793...

Using string interpolation:

8

String Interpolation in Python

String interpolation involves evaluating a string literal that contains expressions.

Using string concatenation:

>>> from math import pi
>>> 'pi starts with ' + str(pi) + '...'
'pi starts with 3.141592653589793...'

>>> print('pi starts with ' + str(pi) + '...')
pi starts with 3.141592653589793...

Using string interpolation:

>>> f'pi starts with {pi}...'
'pi starts with 3.141592653589793...'

8

String Interpolation in Python

String interpolation involves evaluating a string literal that contains expressions.

Using string concatenation:

>>> from math import pi
>>> 'pi starts with ' + str(pi) + '...'
'pi starts with 3.141592653589793...'

>>> print('pi starts with ' + str(pi) + '...')
pi starts with 3.141592653589793...

Using string interpolation:

>>> f'pi starts with {pi}...'
'pi starts with 3.141592653589793...'

>>> print(f'pi starts with {pi}...')
pi starts with 3.141592653589793...

8

String Interpolation in Python

String interpolation involves evaluating a string literal that contains expressions.

Using string concatenation:

>>> from math import pi
>>> 'pi starts with ' + str(pi) + '...'
'pi starts with 3.141592653589793...'

>>> print('pi starts with ' + str(pi) + '...')
pi starts with 3.141592653589793...

Using string interpolation:

>>> f'pi starts with {pi}...'
'pi starts with 3.141592653589793...'

>>> print(f'pi starts with {pi}...')
pi starts with 3.141592653589793...

8

The result of evaluating an f-string
literal contains the str string of the
value of each sub-expression.

String Interpolation in Python

String interpolation involves evaluating a string literal that contains expressions.

Using string concatenation:

>>> from math import pi
>>> 'pi starts with ' + str(pi) + '...'
'pi starts with 3.141592653589793...'

>>> print('pi starts with ' + str(pi) + '...')
pi starts with 3.141592653589793...

Using string interpolation:

>>> f'pi starts with {pi}...'
'pi starts with 3.141592653589793...'

>>> print(f'pi starts with {pi}...')
pi starts with 3.141592653589793...

8

The result of evaluating an f-string
literal contains the str string of the
value of each sub-expression.

Sub-expressions are evaluated in the
current environment.

String Interpolation in Python

String interpolation involves evaluating a string literal that contains expressions.

Using string concatenation:

>>> from math import pi
>>> 'pi starts with ' + str(pi) + '...'
'pi starts with 3.141592653589793...'

>>> print('pi starts with ' + str(pi) + '...')
pi starts with 3.141592653589793...

Using string interpolation:

>>> f'pi starts with {pi}...'
'pi starts with 3.141592653589793...'

>>> print(f'pi starts with {pi}...')
pi starts with 3.141592653589793...

8

The result of evaluating an f-string
literal contains the str string of the
value of each sub-expression.

Sub-expressions are evaluated in the
current environment.

(Demo)

Polymorphic Functions

Polymorphic Functions

10

Polymorphic Functions

Polymorphic function: A function that applies to many (poly) different forms (morph) of data

10

Polymorphic Functions

Polymorphic function: A function that applies to many (poly) different forms (morph) of data

str and repr are both polymorphic; they apply to any object

10

Polymorphic Functions

Polymorphic function: A function that applies to many (poly) different forms (morph) of data

str and repr are both polymorphic; they apply to any object

repr invokes a zero-argument method __repr__ on its argument

10

Polymorphic Functions

Polymorphic function: A function that applies to many (poly) different forms (morph) of data

str and repr are both polymorphic; they apply to any object

repr invokes a zero-argument method __repr__ on its argument

>>> half.__repr__()
'Fraction(1, 2)'

10

Polymorphic Functions

Polymorphic function: A function that applies to many (poly) different forms (morph) of data

str and repr are both polymorphic; they apply to any object

repr invokes a zero-argument method __repr__ on its argument

str invokes a zero-argument method __str__ on its argument

>>> half.__repr__()
'Fraction(1, 2)'

10

Polymorphic Functions

Polymorphic function: A function that applies to many (poly) different forms (morph) of data

str and repr are both polymorphic; they apply to any object

repr invokes a zero-argument method __repr__ on its argument

str invokes a zero-argument method __str__ on its argument

>>> half.__repr__()
'Fraction(1, 2)'

>>> half.__str__()
'1/2'

10

Implementing repr and str

11

Implementing repr and str

The behavior of repr is slightly more complicated than invoking __repr__ on its argument:

11

Implementing repr and str

The behavior of repr is slightly more complicated than invoking __repr__ on its argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found

11

Implementing repr and str

The behavior of repr is slightly more complicated than invoking __repr__ on its argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found

• Question: How would we implement this behavior?

11

Implementing repr and str

The behavior of repr is slightly more complicated than invoking __repr__ on its argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found

• Question: How would we implement this behavior?

11

def repr(x):
 return type(x).__repr__(x)

def repr(x):
 return x.__repr__(x)

def repr(x):
 return x.__repr__()

def repr(x):
 return type(x).__repr__()

def repr(x):
 return super(x).__repr__()

Implementing repr and str

The behavior of repr is slightly more complicated than invoking __repr__ on its argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found

• Question: How would we implement this behavior?

11

def repr(x):
 return type(x).__repr__(x)

def repr(x):
 return x.__repr__(x)

def repr(x):
 return x.__repr__()

def repr(x):
 return type(x).__repr__()

def repr(x):
 return super(x).__repr__()

Implementing repr and str

The behavior of repr is slightly more complicated than invoking __repr__ on its argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found

• Question: How would we implement this behavior?

11

def repr(x):
 return type(x).__repr__(x)

def repr(x):
 return x.__repr__(x)

def repr(x):
 return x.__repr__()

def repr(x):
 return type(x).__repr__()

def repr(x):
 return super(x).__repr__()

The behavior of str is also complicated:

Implementing repr and str

The behavior of repr is slightly more complicated than invoking __repr__ on its argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found

• Question: How would we implement this behavior?

11

def repr(x):
 return type(x).__repr__(x)

def repr(x):
 return x.__repr__(x)

def repr(x):
 return x.__repr__()

def repr(x):
 return type(x).__repr__()

def repr(x):
 return super(x).__repr__()

The behavior of str is also complicated:

• An instance attribute called __str__ is ignored

Implementing repr and str

The behavior of repr is slightly more complicated than invoking __repr__ on its argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found

• Question: How would we implement this behavior?

11

def repr(x):
 return type(x).__repr__(x)

def repr(x):
 return x.__repr__(x)

def repr(x):
 return x.__repr__()

def repr(x):
 return type(x).__repr__()

def repr(x):
 return super(x).__repr__()

The behavior of str is also complicated:

• An instance attribute called __str__ is ignored

• If no __str__ attribute is found, uses repr string

Implementing repr and str

The behavior of repr is slightly more complicated than invoking __repr__ on its argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found

• Question: How would we implement this behavior?

11

def repr(x):
 return type(x).__repr__(x)

def repr(x):
 return x.__repr__(x)

def repr(x):
 return x.__repr__()

def repr(x):
 return type(x).__repr__()

def repr(x):
 return super(x).__repr__()

The behavior of str is also complicated:

• An instance attribute called __str__ is ignored

• If no __str__ attribute is found, uses repr string

• (By the way, str is a class, not a function)

Implementing repr and str

The behavior of repr is slightly more complicated than invoking __repr__ on its argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found

• Question: How would we implement this behavior?

11

def repr(x):
 return type(x).__repr__(x)

def repr(x):
 return x.__repr__(x)

def repr(x):
 return x.__repr__()

def repr(x):
 return type(x).__repr__()

def repr(x):
 return super(x).__repr__()

The behavior of str is also complicated:

• An instance attribute called __str__ is ignored

• If no __str__ attribute is found, uses repr string

• (By the way, str is a class, not a function)

• Question: How would we implement this behavior?

Implementing repr and str

The behavior of repr is slightly more complicated than invoking __repr__ on its argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found

• Question: How would we implement this behavior?

11

(Demo)

def repr(x):
 return type(x).__repr__(x)

def repr(x):
 return x.__repr__(x)

def repr(x):
 return x.__repr__()

def repr(x):
 return type(x).__repr__()

def repr(x):
 return super(x).__repr__()

The behavior of str is also complicated:

• An instance attribute called __str__ is ignored

• If no __str__ attribute is found, uses repr string

• (By the way, str is a class, not a function)

• Question: How would we implement this behavior?

Interfaces

12

Interfaces

Message passing: Objects interact by looking up attributes on each other (passing messages)

12

Interfaces

Message passing: Objects interact by looking up attributes on each other (passing messages)

The attribute look-up rules allow different data types to respond to the same message

12

Interfaces

Message passing: Objects interact by looking up attributes on each other (passing messages)

The attribute look-up rules allow different data types to respond to the same message

A shared message (attribute name) that elicits similar behavior from different object
classes is a powerful method of abstraction

12

Interfaces

Message passing: Objects interact by looking up attributes on each other (passing messages)

The attribute look-up rules allow different data types to respond to the same message

A shared message (attribute name) that elicits similar behavior from different object
classes is a powerful method of abstraction

An interface is a set of shared messages, along with a specification of what they mean

12

Interfaces

Message passing: Objects interact by looking up attributes on each other (passing messages)

The attribute look-up rules allow different data types to respond to the same message

A shared message (attribute name) that elicits similar behavior from different object
classes is a powerful method of abstraction

An interface is a set of shared messages, along with a specification of what they mean

Example:

12

Interfaces

Message passing: Objects interact by looking up attributes on each other (passing messages)

The attribute look-up rules allow different data types to respond to the same message

A shared message (attribute name) that elicits similar behavior from different object
classes is a powerful method of abstraction

An interface is a set of shared messages, along with a specification of what they mean

Example:

Classes that implement __repr__ and __str__ methods that return Python-interpretable and
human-readable strings implement an interface for producing string representations

12

Interfaces

Message passing: Objects interact by looking up attributes on each other (passing messages)

The attribute look-up rules allow different data types to respond to the same message

A shared message (attribute name) that elicits similar behavior from different object
classes is a powerful method of abstraction

An interface is a set of shared messages, along with a specification of what they mean

Example:

Classes that implement __repr__ and __str__ methods that return Python-interpretable and
human-readable strings implement an interface for producing string representations

12

(Demo)

Special Method Names

Special Method Names in Python

14

Special Method Names in Python

14

Certain names are special because they have built-in behavior

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__ Method invoked automatically when an object is constructed

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

Method invoked automatically when an object is constructed

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Method invoked to add one object to another

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Method invoked to add one object to another

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Method invoked to add one object to another

Method invoked to convert an object to True or False

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

__float__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Method invoked to add one object to another

Method invoked to convert an object to True or False

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

__float__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Method invoked to add one object to another

Method invoked to convert an object to True or False

Method invoked to convert an object to a float (real number)

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

__float__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Method invoked to add one object to another

Method invoked to convert an object to True or False

Method invoked to convert an object to a float (real number)

>>> zero, one, two = 0, 1, 2

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

__float__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Method invoked to add one object to another

Method invoked to convert an object to True or False

Method invoked to convert an object to a float (real number)

>>> zero, one, two = 0, 1, 2
>>> one + two
3

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

__float__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Method invoked to add one object to another

Method invoked to convert an object to True or False

Method invoked to convert an object to a float (real number)

>>> zero, one, two = 0, 1, 2
>>> one + two
3
>>> bool(zero), bool(one)
(False, True)

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

__float__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Method invoked to add one object to another

Method invoked to convert an object to True or False

Method invoked to convert an object to a float (real number)

>>> zero, one, two = 0, 1, 2
>>> one + two
3
>>> bool(zero), bool(one)
(False, True)

Same
behavior
using

methods

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

__float__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Method invoked to add one object to another

Method invoked to convert an object to True or False

Method invoked to convert an object to a float (real number)

>>> zero, one, two = 0, 1, 2
>>> one + two
3
>>> bool(zero), bool(one)
(False, True)

>>> zero, one, two = 0, 1, 2
Same

behavior
using

methods

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

__float__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Method invoked to add one object to another

Method invoked to convert an object to True or False

Method invoked to convert an object to a float (real number)

>>> zero, one, two = 0, 1, 2
>>> one + two
3
>>> bool(zero), bool(one)
(False, True)

>>> zero, one, two = 0, 1, 2
>>> one.__add__(two)
3

Same
behavior
using

methods

Special Method Names in Python

14

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

__float__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Method invoked to add one object to another

Method invoked to convert an object to True or False

Method invoked to convert an object to a float (real number)

>>> zero, one, two = 0, 1, 2
>>> one + two
3
>>> bool(zero), bool(one)
(False, True)

>>> zero, one, two = 0, 1, 2
>>> one.__add__(two)
3
>>> zero.__bool__(), one.__bool__()
(False, True)

Same
behavior
using

methods

Special Methods

15

Special Methods

Adding instances of user-defined classes invokes either the __add__ or __radd__ method

15

Special Methods

Adding instances of user-defined classes invokes either the __add__ or __radd__ method

>>> Ratio(1, 3) + Ratio(1, 6)
Ratio(1, 2)

15

Special Methods

Adding instances of user-defined classes invokes either the __add__ or __radd__ method

>>> Ratio(1, 3) + Ratio(1, 6)
Ratio(1, 2)

15

>>> Ratio(1, 3).__add__(Ratio(1, 6))
Ratio(1, 2)

Special Methods

Adding instances of user-defined classes invokes either the __add__ or __radd__ method

>>> Ratio(1, 3) + Ratio(1, 6)
Ratio(1, 2)

15

>>> Ratio(1, 3).__add__(Ratio(1, 6))
Ratio(1, 2)

>>> Ratio(1, 6).__radd__(Ratio(1, 3))
Ratio(1, 2)

Special Methods

Adding instances of user-defined classes invokes either the __add__ or __radd__ method

>>> Ratio(1, 3) + Ratio(1, 6)
Ratio(1, 2)

15

http://docs.python.org/py3k/reference/datamodel.html#special-method-names

http://getpython3.com/diveintopython3/special-method-names.html

>>> Ratio(1, 3).__add__(Ratio(1, 6))
Ratio(1, 2)

>>> Ratio(1, 6).__radd__(Ratio(1, 3))
Ratio(1, 2)

Special Methods

Adding instances of user-defined classes invokes either the __add__ or __radd__ method

>>> Ratio(1, 3) + Ratio(1, 6)
Ratio(1, 2)

15

http://docs.python.org/py3k/reference/datamodel.html#special-method-names

http://getpython3.com/diveintopython3/special-method-names.html

>>> Ratio(1, 3).__add__(Ratio(1, 6))
Ratio(1, 2)

>>> Ratio(1, 6).__radd__(Ratio(1, 3))
Ratio(1, 2)

(Demo)

Generic Functions

16

Generic Functions

A polymorphic function might take two or more arguments of different types

16

Generic Functions

A polymorphic function might take two or more arguments of different types

Type Dispatching: Inspect the type of an argument in order to select behavior

16

Generic Functions

A polymorphic function might take two or more arguments of different types

Type Dispatching: Inspect the type of an argument in order to select behavior

Type Coercion: Convert one value to match the type of another

16

Generic Functions

A polymorphic function might take two or more arguments of different types

Type Dispatching: Inspect the type of an argument in order to select behavior

Type Coercion: Convert one value to match the type of another

16

>>> Ratio(1, 3) + 1
Ratio(4, 3)

Generic Functions

A polymorphic function might take two or more arguments of different types

Type Dispatching: Inspect the type of an argument in order to select behavior

Type Coercion: Convert one value to match the type of another

16

>>> Ratio(1, 3) + 1
Ratio(4, 3)

>>> 1 + Ratio(1, 3)
Ratio(4, 3)

Generic Functions

A polymorphic function might take two or more arguments of different types

Type Dispatching: Inspect the type of an argument in order to select behavior

Type Coercion: Convert one value to match the type of another

16

>>> Ratio(1, 3) + 1
Ratio(4, 3)

>>> 1 + Ratio(1, 3)
Ratio(4, 3)

>>> from math import pi
>>> Ratio(1, 3) + pi
3.4749259869231266

Generic Functions

A polymorphic function might take two or more arguments of different types

Type Dispatching: Inspect the type of an argument in order to select behavior

Type Coercion: Convert one value to match the type of another

16

(Demo)

>>> Ratio(1, 3) + 1
Ratio(4, 3)

>>> 1 + Ratio(1, 3)
Ratio(4, 3)

>>> from math import pi
>>> Ratio(1, 3) + pi
3.4749259869231266

