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String Representations

An object value should behave like the kind of data it is meant to represent

For instance, by producing a string representation of itself

Strings are important: they represent language and programs

In Python, all objects produce two string representations:

• The str is legible to humans

• The repr is legible to the Python interpreter

The str and repr strings are often the same, but not always
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repr(object) -> string 

Return the canonical string representation of the object. 
For most object types, eval(repr(object)) == object.

The repr function returns a Python expression (a string) that evaluates to an equal object
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The str String for an Object

Human interpretable strings are useful as well:

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> repr(half)
'Fraction(1, 2)'
>>> str(half)
'1/2'

(Demo)
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Polymorphic function: A function that applies to many (poly) different forms (morph) of data

str and repr are both polymorphic; they apply to any object

repr invokes a zero-argument method __repr__ on its argument
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>>> Ratio(1, 3).__add__(Ratio(1, 6)) 
Ratio(1, 2)

>>> Ratio(1, 6).__radd__(Ratio(1, 3)) 
Ratio(1, 2)
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(Demo)

>>> Ratio(1, 3) + 1 
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>>> from math import pi 
>>> Ratio(1, 3) + pi 
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