
Composition

Announcements

Linked Lists

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

4

3 , 4 , 5

Link.empty

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

Link(3, Link(4, Link(5, Link.empty)))

A linked list
is a pair

The first (zeroth)
element is an

attribute value

The rest of the
elements are stored
in a linked list

A class attribute represents
an empty linked list

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

5

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance Link.empty

 , Link.empty)Link(3, Link(4, Link(5)))

Linked List Class

 class Link:

 empty = ()

6

Some zero-length sequence

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):

 assert rest is Link.empty or isinstance(rest, Link)

 self.first = first

 self.rest = rest

(Demo)

Link(3, Link(4, Link(5)))

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Linked List Processing

Example: Range, Map, and Filter for Linked Lists
square, odd = lambda x: x * x, lambda x: x % 2 == 1

list(map(square, filter(odd, range(1, 6)))) # [1, 9, 25]

map_link(square, filter_link(odd, range_link(1, 6))) # Link(1, Link(9, Link(25)))

def range_link(start, end):

 """Return a Link containing consecutive integers from start to end.

 >>> range_link(3, 6)

 Link(3, Link(4, Link(5)))

 """

def map_link(f, s):

 """Return a Link that contains f(x) for each x in Link s.

 >>> map_link(square, range_link(3, 6))

 Link(9, Link(16, Link(25)))

 """

def filter_link(f, s):

 """Return a Link that contains only the elements x of Link s for which f(x)

 is a true value.

 >>> filter_link(odd, range_link(3, 6))

 Link(3, Link(5))

 """

8

Linked Lists Mutation

>>> s = Link(1, Link(2, Link(3)))

>>> s.first = 5

>>> t = s.rest

>>> t.rest = s

>>> s.first

5

>>> s.rest.rest.rest.rest.rest.first

2

Linked Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

10

RestFirst
5s

RestFirst
2

t

Global frame

The rest of a linked list can contain the linked list as a sub-list

Note: The actual
environment diagram is
much more complicated.

RestFirst
1s

RestFirst
2

Global frame RestFirst
3

Linked List Mutation Example

Adding to an Ordered List

12

first: 1

rest:

Link instance

first: 3

rest:

Link instance

first: 5

rest:

Link instance

add(s, 0)

s:

def add(s, v):

 """Add v to an ordered list s with no repeats, returning modified s.”””

(Note: If v is already in s, then don't modify s, but still return it.)

Adding to an Ordered List

13

first: 1 0

rest:

Link instance

first: 3

rest:

Link instance

first: 1

rest:

Link instance

first: 5

rest:

Link instance

s:

add(s, 4)add(s, 3)

def add(s, v):

 """Add v to an ordered list s with no repeats, returning modified s.”””

(Note: If v is already in s, then don't modify s, but still return it.)

add(s, 0)

Adding to an Ordered List

14

first: 1 0

rest:

Link instance

first: 3

rest:

Link instance

first: 5 4

rest:

Link instance

first: 1

rest:

Link instance

first: 5

rest:

Link instance

add(s, 6)

s:

add(s, 4)add(s, 3)add(s, 0)

def add(s, v):

 """Add v to an ordered list s with no repeats...”””

Adding to an Ordered List

15

first: 1 0

rest:

Link instance

first: 3

rest:

Link instance

first: 5 4

rest:

Link instance

first: 1

rest:

Link instance

first: 5

rest:

Link instance

first: 6

rest:

Link instance

s:

add(s, 6)add(s, 4)add(s, 3)add(s, 0)

def add(s, v):

 """Add v to an ordered list s with no repeats..."""

Adding to a Set Represented as an Ordered List

16

def add(s, v):

 """Add v to s, returning modified s.”””

 >>> s = Link(1, Link(3, Link(5)))

 >>> add(s, 0)

 Link(0, Link(1, Link(3, Link(5))))

 >>> add(s, 3)

 Link(0, Link(1, Link(3, Link(5))))

 >>> add(s, 4)

 Link(0, Link(1, Link(3, Link(4, Link(5)))))

 >>> add(s, 6)

 Link(0, Link(1, Link(3, Link(4, Link(5, Link(6))))))

 """

 assert s is not List.empty

 if s.first > v:

 s.first, s.rest = __________________________ , _____________________________

 elif s.first < v and empty(s.rest):

 s.rest = ___

 elif s.first < v:

 __

 return s

v Link(s.first, s.rest)

add(s.rest, v)

Link(v)

s:

.

Tree Class

Tree Abstraction (Review)

18

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes

People often refer to labels by their locations: "each parent is the sum of its children"

Root of the whole tree

Root of a branch

Path

 or Root Node

Tree Class

class Tree:

 def __init__(self, label, branches=[]):

 self.label = label

 for branch in branches:

 assert isinstance(branch, Tree)

 self.branches = list(branches)

def fib_tree(n):

 if n == 0 or n == 1:

 return Tree(n)

 else:

 left = fib_tree(n-2)

 right = fib_tree(n-1)

 fib_n = left.label + right.label

 return Tree(fib_n, [left, right])

(Demo)
19

A Tree has a label and a list of branches; each branch is a Tree

 for branch in branches:

 assert is_tree(branch)

 return [label] + list(branches)
def label(tree):

 return tree[0]

def branches(tree):

 return tree[1:]

def tree(label, branches=[]):

def fib_tree(n):

 if n == 0 or n == 1:

 return tree(n)

 else:

 left = fib_tree(n-2)

 right = fib_tree(n-1)

 fib_n = label(left) + label(right)

 return tree(fib_n, [left, right])

Tree Mutation

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

21

def prune(t, n):

 """Prune all sub-trees whose label is n."""

 t.branches = [______________ for b in t.branches if _____________________]

 for b in t.branches:

 prune(_______________________________, _______________________________)

2

3

1

0 1 1 1

0 1

b b.label != n

b n

