Efficiency

Announcements

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

def fib(n):

if n ==
[CRR—

T ib(3) g
e
i fib(1) fib(2) ™.
N

1 fib(0) fib(1) |

"o
)

return 0

elif n ==

return 1

else:

return fib(n-2) + fib(n-1)

Memoization

Memoization

Idea: Remember the results that have been computed before

{cache = {}: map to return values

def memoized(n):

def memo(f): i Keys are arguments that]

if n not in cache:
cache[n] = f(n)
return cacheln]

returnimemoized : Same behavior as f,
if f is a pure function

1

(Demo)

Memoized Tree Recursion

@ Call to fib

@ Found in cache

O Skipped
‘) A fib(3) .
1 .
_______ i s N
ib(1) fib(2)
s
o1 fib(0) fib(1)
% |
0 1

Exponentiation

Exponentiation

Goal: one more multiplication lets us double the problem size

def exp(b, n):
if n == 0: 1
return 1 —
else: b bt

return b * exp(b, n-1)

def exp_fast(b, n):
if n == 0:
return 1
elif n % 2 == 0: 1
return square(exp_fast(b, n//2))
else: = (b%n)2
return b * exp_fast(b, n-1) b p-1
def square(x):

return x * x

ifn=0

otherwise

ifn=0
if n is even
if n is odd

(Demo)

Exponentiation

Goal: one more multiplication lets us double the problem size

def exp(b, n): Linear time:
if n == 0: * Doubling the input
return 1 doubles the time
else:

* 1024x the input takes

return b x exp(b, n-1) 1024x as much time

def exp_fast(b, n): Logarithmic time:
if n==0: « Doubling the input
return 1 increases the time
elif n % 2 == 0: by one step
return square(exp_fast(b, n//2))

* 1024x the input
increases the time
by only 10 steps

else:
return b * exp_fast(b, n-1)

def square(x):
return x * Xx

Orders of Growth

Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

def overlap(a, b):
count = 0
for item in a:
for other in b:

if item == other: 5 0 1 o o

count += 1
return count 6 [} [} 0 1
overlap([3, 5, 7, 61, [4, 5, 6, 5]) 5 0 1 0 0

(Demo)

. . Time for n+n Time for input n+l Time for input n
Exponential Time Common Orders of Growth
Tree-recursive functions can take exponential time def fib(n): Exponential growth. E.g., recursive fib a- bt = (a-bn) b
if n == 0: Incrementing n multiplies time by a constant
return 0
£ib(5) elif n == 1:
return 1
else: Quadratic growth. E.g., overla
/ \ return fib(n-2) + fib(n-1) .g) ¢ . P) a~(n+l)2 = (a'n2)+a-(2n+1)
£ib(3) £ib(4) Incrementing n increases time by n times a constant
/ AN
fib(1) fib(2)
Linear growth. E.g., slow ex
‘ f'b(g) fz\(l) fib(2) fib(3) Increme:ting n inc?‘eases timepby a constant @ (nJr 1) - (a : n) ta
rom * / AN / AN
0‘ 1‘ fib(0) fib(1) fib(1) fib(2)
| | 7N -
. E.qg. fast
) 1 1 fib(e) fib(1) Logarithmic growth. E.g., exp_fas a-In(2-n)=(a-Inn)+a-1n2
‘ ‘ Doubling n only increments time by a constant
0 1
Constant growth. Increasing n doesn't affect time
Big Theta and Big O Notation for Orders of Growth
Exponential growth. E.g., recursive fib ") o)
Incrementing n multiplies time by a constant
Quadratic growth. E.g., overlap o(n?) o(n?)
. Incrementing n increases time by n times a constant
Order of Growth Notation
Linear growth. E.g., slow exp O(n) O(n)
Incrementing n increases time by a constant
Logarithmic growth. E.g., exp_fast ©(logn) O(logn)
Doubling n only increments time by a constant
Constant growth. Increasing n doesn't affect time o(1) o(1)

Space and Environments

Which environment frames do we need to keep during evaluation?
At any moment there is a set of active environments

Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled
Space
Active environments:
«Environments for any function calls currently being evaluated
-Parent environments of functions named in active environments
(Demo)
Fibonacci Space Consumption Fibonacci Space Consumption
Has an active environment
/////////////flb(S) \\\\\\\\\\\\\ /////////////flb(S) \\\\\\\\\\\\\ Can be reclaimed
fib(3) fib(4) fib(3) fib(4)
/ AN
fib(1) fib(2)
‘ . - >\ fib(2) fib(3)
1 fib(0) fib(1) V N ya N
| | fib(@) | fib(1)| fib(1) fib(2)
L O I \
0 L1 1 fib(0) fib(1)

Assume we have 0 1
reached this step

