
Calculator Announcements

Exceptions

Raise Statements

Python exceptions are raised with a raise statement

raise <expression>

<expression> must evaluate to a subclass of BaseException or an instance of one

Exceptions are constructed like any other object. E.g., TypeError('Bad argument!')

TypeError -- A function was passed the wrong number/type of argument

NameError -- A name wasn't found

KeyError -- A key wasn't found in a dictionary

RecursionError -- Too many recursive calls

4

(Demo)

Try Statements

Try statements handle exceptions

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Execution rule:

The <try suite> is executed first

If, during the course of executing the <try suite>,
an exception is raised that is not handled otherwise, and

If the class of the exception inherits from <exception class>, then

The <except suite> is executed, with <name> bound to the exception

5

Handling Exceptions

Exception handling can prevent a program from terminating

>>> try:
 x = 1/0
 except ZeroDivisionError as e:
 print('handling a', type(e))
 x = 0

handling a <class 'ZeroDivisionError'>
>>> x
0

6

(Demo)

Example: Reduce

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

8

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

pow

pow

pow

2 2

4 3

64 4

16,777,216

[

[

(Demo)

Programming Languages

Programming Languages

A computer typically executes programs written in many different programming languages

10

Machine languages: statements are interpreted by the hardware itself

•A fixed set of instructions invoke operations implemented by the circuitry of the
central processing unit (CPU)

•Operations refer to specific hardware memory addresses; no abstraction mechanisms

High-level languages: statements & expressions are interpreted by another program or
compiled (translated) into another language

•Provide means of abstraction such as naming, function definition, and objects
•Abstract away system details to be independent of hardware and operating system

from dis import dis
dis(square)

def square(x):
 return x * x

Python 3

LOAD_FAST 0 (x)
LOAD_FAST 0 (x)
BINARY_MULTIPLY
RETURN_VALUE

Python 3 Byte Code

Metalinguistic Abstraction

A powerful form of abstraction is to define a new language that is tailored to a particular
type of application or problem domain

11

Type of application: Erlang was designed for concurrent programs. It has built-in elements
for expressing concurrent communication. It is used, for example, to implement chat
servers with many simultaneous connections

Problem domain: The MediaWiki mark-up language was designed for generating static web
pages. It has built-in elements for text formatting and cross-page linking. It is used, for
example, to create Wikipedia pages

A programming language has:

• Syntax: The legal statements and expressions in the language
• Semantics: The execution/evaluation rule for those statements and expressions

To create a new programming language, you either need a:

• Specification: A document describe the precise syntax and semantics of the language
• Canonical Implementation: An interpreter or compiler for the language

Parsing

Reading Scheme Lists

A Scheme list is written as elements in parentheses:

(<element_0> <element_1> ... <element_n>)

Each <element> can be a combination or primitive

(+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6))

The task of parsing a language involves coercing a string representation of an expression
to the expression itself

(Demo)

13

A Scheme list

Parsing

A Parser takes text and returns an expression

14

 '(+ 1'
 ' (- 23)'

 ' (* 4 5.6))'

Text ExpressionLexical
analysis Tokens Syntactic

analysis

'(', '+', 1
'(', '-', 23, ')'
'(', '*', 4, 5.6, ')', ')'

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))

printed as

•Iterative process
•Checks for malformed tokens
•Determines types of tokens
•Processes one line at a time

•Tree-recursive process
•Balances parentheses
•Returns tree structure
•Processes multiple lines

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression, which may be
nested

Each call to scheme_read consumes the input tokens for exactly one expression

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them

15

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')' Scheme-Syntax Calculator

(Demo)

Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2 -4 5.6

A call expression is a combination that begins with an operator (+, -, *, /) followed by 0
or more expressions: (+ 1 2 3) (/ 3 (+ 4 5))

17

Expressions are represented as Scheme lists (Pair instances) that encode tree structures.

(* 3
 (+ 4 5)
 (* 6 7 8))

Expression

restfirst
*

restfirst
3

restfirst restfirst
nil

restfirst
+

restfirst
4

restfirst
5 nil

restfirst
*

restfirst
6

restfirst
7

restfirst
8 nil

Representation as PairsExpression Tree

* 3

+ 4 5 * 6 87

Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.

+: Sum of the arguments

*: Product of the arguments

-: If one argument, negate it. If more than one, subtract the rest from the first.

/: If one argument, invert it. If more than one, divide the rest from the first.

18

(+ 5
 (* 2 3)
 (* 2 5 5))

Expression Expression Tree

+ 5

* 2 3 * 2 55

506

61

Evaluation

The Eval Function

The eval function computes the value of an expression, which is always a number

It is a generic function that dispatches on the type of the expression (primitive or call)

20

def calc_eval(exp):

 if isinstance(exp, (int, float)):

 return exp

 elif isinstance(exp, Pair):

 arguments = exp.rest.map(calc_eval)

 return calc_apply(exp.first, arguments)

 else:

 raise TypeError

A number evaluates...

A call expression evaluates...

 to its argument values

 to itself

'+', '-',
'*', '/'

A Scheme list
of numbers

Recursive call
returns a number
for each operand

 combined by an operator

Implementation Language Semantics

Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values

In calculator, all operations are named by built-in operators: +, -, *, /

21

def calc_apply(operator, args):
 if operator == '+':
 return reduce(add, args, 0)
 elif operator == '-':
 ...
 elif operator == '*':
 ...
 elif operator == '/':
 ...
 else:
 raise TypeError

 Sum of the arguments
+:

Implementation Language Semantics

 ...
-:

...

(Demo)

Interactive Interpreters

Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter

1. Print a prompt

2. Read text input from the user

3. Parse the text input into an expression

4. Evaluate the expression

5. If any errors occur, report those errors, otherwise

6. Print the value of the expression and repeat

23

(Demo)

Raising Exceptions

Exceptions are raised within lexical analysis, syntactic analysis, eval, and apply

Example exceptions

• Lexical analysis: The token 2.3.4 raises ValueError("invalid numeral")

• Syntactic analysis: An extra) raises SyntaxError("unexpected token")

• Eval: An empty combination raises TypeError("() is not a number or call expression")

• Apply: No arguments to - raises TypeError("- requires at least 1 argument")

24

(Demo)

Handling Exceptions

An interactive interpreter prints information about each error

A well-designed interactive interpreter should not halt completely on an error,
so that the user has an opportunity to try again in the current environment

25

(Demo)

