
Interpreters

Announcements

Interpreting Scheme

The Structure of an Interpreter

4

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined procedures

Requires an
environment
for symbol

lookup

Creates a new
environment each time

a user-defined
procedure is applied

Special Forms

Scheme Evaluation

The scheme_eval function choose behavior based on expression form:

• Symbols are looked up in the current environment

• Self-evaluating expressions are returned as values

• All other legal expressions are represented as Scheme lists, called combinations

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special forms
are identified
by the first
list element

Any combination
that is not a
known special
form is a call

expression

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

(demo (list 1 2))

6

Logical Forms

Logical Special Forms

Logical forms may only evaluate some sub-expressions

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expression: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

The value of an if expression is the value of a sub-expression:

• Evaluate the predicate

• Choose a sub-expression: <consequent> or <alternative>

• Evaluate that sub-expression to get the value of the whole expression

do_if_form

(Demo)

8

Quotation

Quotation

The quote special form evaluates to the quoted expression, which is not evaluated

(quote <expression>)

The <expression> itself is the value of the whole quote expression

'<expression> is shorthand for (quote <expression>)

The scheme_read parser converts shorthand ' to a combination that starts with quote

10

(Demo)

(quote (+ 1 2)) (+ 1 2)evaluates to the
three-element Scheme list

(quote (1 2)) '(1 2)is equivalent to

Lambda Expressions

Lambda Expressions

Lambda expressions evaluate to user-defined procedures

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

class LambdaProcedure:

 def __init__(self, formals, body, env):

 self.formals = formals

 self.body = body

 self.env = env

12

A scheme list of symbols
A scheme list of expressions
A Frame instance

Frames and Environments

A frame represents an environment by having a parent frame

Frames are Python instances with methods lookup and define

In Project 4, Frames do not hold return values

g: Global frame

y
z

3
5

f1: [parent=g]

x
z

2
4

13

(Demo)

Define Expressions

Define Expressions

Define binds a symbol to a value in the first frame of the current environment.

(define <name> <expression>)

(define (<name> <formal parameters>) <body>)

(define <name> (lambda (<formal parameters>) <body>))

Procedure definition is shorthand of define with a lambda expression

1. Evaluate the <expression>

2. Bind <name> to its value in the current frame

(define x (+ 1 2))

15

Applying User-Defined Procedures

To apply a user-defined procedure, create a new frame in which formal parameters are bound
to argument values, whose parent is the env attribute of the procedure

Evaluate the body of the procedure in the environment that starts with this new frame

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

(demo (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

[parent=g] s

[parent=g] s

g: Global frame

demo LambdaProcedure instance [parent=g]

16

Eval/Apply in Lisp 1.5

17

