
CS 61A Final Exam Study Guide – Page 1

SELECT "abraham" AS parent, "barack" AS child UNION
SELECT "abraham" , "clinton" UNION
SELECT "delano" , "herbert" UNION
SELECT "fillmore" , "abraham" UNION
SELECT "fillmore" , "delano" UNION
SELECT "fillmore" , "grover" UNION
SELECT "eisenhower" , "fillmore";

CREATE TABLE parents AS

SELECT [expression] AS [name], [expression] AS [name], ... ;

CREATE TABLE dogs AS
 SELECT "abraham" AS name, "long" AS fur UNION
 SELECT "barack" , "short" UNION
 SELECT "clinton" , "long" UNION
 SELECT "delano" , "long" UNION
 SELECT "eisenhower" , "short" UNION
 SELECT "fillmore" , "curly" UNION
 SELECT "grover" , "short" UNION
 SELECT "herbert" , "curly";

E

F

A D G

B C H

SELECT a.child AS first, b.child AS second
 FROM parents AS a, parents AS b
 WHERE a.parent = b.parent AND a.child < b.child;

First Second
barack clinton

abraham delano
abraham grover
delano grover

Latitude Longitude Name

38 122 Berkeley

42 71 Cambridge

45 93 Minneapolis

A table has columns and rows

A column
has a

name and
a type

A row has a value for each column

The number of groups is the number of unique values of an expression
A having clause filters the set of groups that are aggregated
select weight/legs, count(*) from animals
 group by weight/legs
 having count(*)>1;

kind legs weight

dog 4 20

cat 4 10

ferret 4 10

parrot 2 6

penguin 2 10

t-rex 2 12000

weight/
legs count(*)

5 2

2 2

weight/legs=5

weight/legs=2

weight/legs=2

weight/legs=3

weight/legs=5

weight/legs=6000

SELECT [columns] FROM [table] WHERE [condition] ORDER BY [order];

(define size 5) ; => size
(* 2 size) ; => 10
(if (> size 0) size (- size)) ; => 5
(cond ((> size 0) size) ((= size 0) 0) (else (- size))) ; => 5
((lambda (x y) (+ x y size)) size (+ 1 2)) ; => 13
(let ((a size) (b (+ 1 2))) (* 2 a b)) ; => 30
(map (lambda (x) (+ x size)) (quote (2 3 4))) ; => (7 8 9)
(filter odd? (quote (2 3 4))) ; => (3)
(list (cons 1 nil) size 'size) ; => ((1) 5 size)
(list (equal? 1 2) (null? nil) (= 3 4) (eq? 5 5)) ; => (#f #t #f #t)
(list (or #f #t) (or) (or 1 2)) ; => (#t #f 1)
(list (and #f #t) (and) (and 1 2)) ; => (#f #t 2)
(list 'a 2) ; => (a 2)
(append '(1 2) '(3 4)) ; => (1 2 3 4)
(not (> 1 2)) ; => #t
(begin (define x (+ size 1)) (* x 2)) ; => 12

Exceptions are raised with a raise statement.
raise <expr>

<expr> must evaluate to a subclass of BaseException or an instance of one.
try:
 <try suite>
except <exception class> as <name>:
 <except suite>

The <try suite> is executed first.
If, during the course of executing the
<try suite>, an exception is raised
that is not handled otherwise, and

>>> try:
 x = 1/0
 except ZeroDivisionError as e:
 print('handling a', type(e))
 x = 0

handling a <class 'ZeroDivisionError'>
>>> x
0

If the class of the exception inherits from <exception class>, then
The <except suite> is executed, with <name> bound to the exception.

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).
Lexical scope: The parent of a frame is the environment in
which a procedure was defined. (lambda ...)
Dynamic scope: The parent of a frame is the environment in
which a procedure was called. (mu ...)

> (define f (mu (x) (+ x y)))
> (define g (lambda (x y) (f (+ x x))))
> (g 3 7)
13

create table lift as
 select 101 as chair, 2 as single, 2 as couple union
 select 102 , 0 , 3 union
 select 103 , 4 , 1;

select chair, single + 2 * couple as total from lift;

101

102

103

sqlite> CREATE TABLE phrase AS SELECT "hello, world" AS s;
sqlite> SELECT substr(s, 4, 2) || substr(s, instr(s, " ")+1, 1)
 FROM phrase;
low

Basic string manipulation is built into SQL, but differs from Python

sqlite> SELECT "hello," || " world";
hello, world

String values can be combined to form longer strings

(append s t): list the elements of s and t; append can be called
on more than 2 lists
(map f s): call a procedure f on each element of a list s and list
the results
(filter f s): call a procedure f on each element of a list s and
list the elements for which a true value is the result
(apply f s): call a procedure f with the elements of a list as its
arguments

(define (factorial n)
 (if (= n 0) 1
 (* n (factorial (- n 1)))))

(define (fib n)
 (cond
 ((= n 0) 0)
 ((= n 1) 1)
 (else (+ (fib (- n 2)) (fib (- n 1))))))

(define (nines num)
 (if (= num 0)
 0
 (if (= (modulo num 10) 9)
 (+ 1 (nines (floor (/ num 10))))
 (nines (floor (/ num 10))))))

There are two ways to quote an expression
 Quote: '(a b) => (a b)
 Quasiquote: `(a b) => (a b)
Parts of a quasiquoted expression can be unquoted with ,
 (define b 4)
 Quote: '(a ,(+ b 1)) => (a (unquote (+ b 1))
 Quasiquote: `(a ,(+ b 1)) => (a 5)
Quasiquotation is convenient for generating Scheme expressions:
 (define (make-add-lambda n) `(lambda (d) (+ d ,n)))
 (make-add-lambda 2) => (lambda (d) (+ d 2))

A macro is an operation performed on the source code of a program before evaluation
Macros exist in many languages, but are easiest to define correctly in a language like Lisp
Scheme has a define-macro special form that defines a source code transformation

(define-macro (twice expr)
 (list 'begin expr expr))

Evaluation procedure of a macro call expression:
• Evaluate the operator sub-expression, which evaluates to a macro
• Call the macro procedure on the operand expressions without evaluating them first
• Evaluate the expression returned from the macro procedure

> (twice (print 2))
2
2

(begin (print 2) (print 2))

Scheme programs consist of expressions, which can be:
• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...
Numbers are self-evaluating; symbols are bound to values.
Call expressions have an operator and 0 or more operands.

A combination that is not a call expression is a special form:
• If expression: (if <predicate> <consequent> <alternative>)
• Binding names: (define <name> <expression>)
• New procedures: (define (<name> <formal parameters>) <body>)

Lambda expressions evaluate to anonymous procedures.

λ
 (lambda (<formal-parameters>) <body>)
Two equivalent expressions:
 (define (plus4 x) (+ x 4))
 (define plus4 (lambda (x) (+ x 4)))
An operator can be a combination too:
 ((lambda (x y z) (+ x y (square z))) 1 2 3)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
They also used a non-obvious notation for linked lists.
• A (linked) Scheme list is a pair in which the second element is

nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has an arbitrary value for the second element of the

last pair. Dotted lists may not be well-formed lists.

 > (define x (cons 1 nil))
 > x
 (1)
 > (car x)
 1
 > (cdr x)
 ()
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

Symbols normally refer to values; how do we refer to symbols?
 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in
the resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.
 > (car '(a b c))
 a
 > (cdr '(a b c))
 (b c)

Symbols are now values

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)

printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element A number

scheme_reader.py scalc.py

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)

printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element A number

scheme_reader.py scalc.py

A Scheme list is written as elements in parentheses:

(<element0> <element1> ... <elementn>)

Each <element> can be a combination or atom (primitive).
(+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6))
The task of parsing a language involves coercing a string
representation of an expression to the expression itself.
Parsers must validate that expressions are well-formed.

A Scheme list

 '(+ 1'
 ' (- 23)'
 ' (* 4 5.6))'

Lines Expression

A Parser takes a sequence of lines and returns an expression.

Lexical
analysis Tokens Syntactic

analysis

'(', '+', 1
'(', '-', 23, ')'
'(', '*', 4, 5.6, ')', ')'

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))
printed as

• Iterative process
• Checks for malformed tokens
• Determines types of tokens
• Processes one line at a time

• Tree-recursive process
• Balances parentheses
• Returns tree structure
• Processes multiple lines

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.
Each call to scheme_read consumes the input tokens for exactly
one expression.
Base case: symbols and numbers
Recursive call: scheme_read sub-expressions and combine them

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined procedures

Requires an
environment
for name
lookup

The structure
of the Scheme
interpreter

To apply a user-defined procedure, create a new frame in which
formal parameters are bound to argument values, whose parent
is the env of the procedure, then evaluate the body of the
procedure in the environment that starts with this new frame.

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

(f (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

[parent=g] s

[parent=g] s

g: Global frame

f LambdaProcedure instance [parent=g]

CS 61A Final Exam Study Guide – Page 2

Creates a new
environment each

time a user-
defined procedure

is applied

A basic interpreter has two parts: a parser and an evaluator.

>>> s = Pair(1, Pair(2, Pair(3, nil)))
>>> s
Pair(1, Pair(2, Pair(3, nil)))
>>> print(s)
(1 2 3)

class Pair:
 """A pair has two instance attributes:
 first and rest.

 rest must be a Pair or nil.
 """
 def __init__(self, first, rest):
 self.first = first
 self.rest = rest

(* 3
 (+ 4 5)
 (* 6 7 8))

Calculator Expression Expression Tree

restfirst
*

restfirst
3

restfirst restfirst
nil

restfirst
+

restfirst
4

restfirst
5 nil

restfirst
*

restfirst
6

restfirst
7

restfirst
8 nil

Representation as Pairs

The Calculator language has primitive expressions and call expressions

* 3

+ 4 5 * 6 87

restfirst
1

restfirst
2

restfirst
3 nil

(car (cons 1 nil)) -> 1
(cdr (cons 1 nil)) -> ()
(cdr (cons 1 (cons 2 nil))) -> (2)

