Tree Recursion

Announcements

Discussion Review: Sevens

The Game of Sevens

Players in a circle count up from 1 in the clockwise direction. If a number is divisible by
7 or contains a 7 (or both), switch directions. If someone says a number when it's not
their turn or someone misses the beat on their turn, the game ends.

Implement sevens(n, k) which returns the position of who says n among k players.

1. Pick an example input and corresponding output.
2.Describe a process (in English) that computes the output from the input

4. Implement the process in code u51ng those additional names.

n: the final number
K: how many players
i: the current number
who: the current player
direction: who's next

(Demo)

Mutual Recursion

Mutually Recursive Functions
Two functions f and g are mutually recursive if f calls g and g calls f.

def unique_prime_factors(n):
"""Return the number of unique prime factors of n.

>>> unique_prime_factors(51) # 3 x 17

2

>>> unique_prime_factors(9) # 3 *x 3

1

>>> unique_prime_factors(576) # 2 x 2 % 2 % 2 % 2 % 2 x 3 x 3
2

(Demo)

Tree Recursion

Spring 2023 Midterm 2 Question 5

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.

For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)

Implement count_park, which returns the number of ways that vehicles can be parked in n
adjacent parking spots for positive integer n. Some or all spots can be empty.

def count_park(n):
"""Count the ways to park cars and motorcycles in n adjacent spots.
>>> count_park(l) # '.' or 's'
2
>>> count_park(2) # '..', '.%', '%.', '%%', or '<>'
5

>>> count_park(4) # some examples: '<><>', '.%%.', '%<>%', '%.<>'
29 —t(—
mminni
if n < 0:
return ____
elif n ==
return ____
else:
return

Preview: Memoization

A memoized function stores the return value for every argument it receives. When called a
second time with the same argument, it returns the stored value rather than recomputing it.

LRU: least recently used Cache: §tored arguments
and their return values

from functools import lru_cache
memoize = lru_cache(None)

@memoize Store all return values instead
def f(n): of just a limited number

Soon we will be able to implement @memoize ourselves.

(Demo)

Twenty-One Rules

Two players alternate turns, on which they can add 1, 2, or 3 to the current total
The total starts at 0
The game end whenever the total is 21 or more

The last player to add to the total loses

At the start of your

turn, this is bad 19
e

Some states are good; some are bad 21+ «—20<«—18
'\

17

(Demo)

