
Data Abstraction

Announcements

Discussion 4

Max Product

Write a function that takes in a list and returns the maximum product that can be formed
using non-consecutive elements of the list. All numbers in the input list are greater than
or equal to 1.

def max_product(s):

 """Return the maximum product that can be

 formed using non-consecutive elements of s.

 >>> max_product([10, 3, 1, 9, 2]) # 10 * 9

 90

 >>> max_product([5, 10, 5, 10, 5]) # 5 * 5 * 5

 125

 >>> max_product([])

 1

 """

 if len(s) == 0:

 return 1

 elif len(s) == 1:

 return s[0]

 else:

 return ____

4

Either include s[0] but not s[1], OR

Don't include s[0]

Choose the larger of:

multiplying s[0] by the max_product of s[2:] (skipping s[1]) OR

 just the max_product of s[1:] (skipping s[0])

max(s[0] * max_product(s[2:]), max_product(s[1:]))

A tip for finding a recursive process:

1.Pick an example: s = [5, 10, 5, 10, 5]

2.Write down what recursive calls will do:  
- max_product([10, 5, 10, 5]) → 10 * 10 
- max_product([5, 10, 5]) → 5 * 5 
- max_product([10, 5]) → 10 
- max_product([5]) → 5

3.Which one helps build the result?

Sum More Fun

Implement nested_sums(n),
which takes a total n>0.  
It returns a list of all
nested lists of n 1's that
have at least one 1 between
each pair of brackets.  
 
Allowed: [1, [1, 1], 1]  
Not allowed: [[1, 1, 1], 1]

5

def nested_sums(n):

 """Return all nested lists of n 1's with no adjacent brackets.

 >>> for s in nested_sums(5): print(s)

 [1, 1, 1, 1, 1]

 [1, 1, 1, [1], 1]

 [1, 1, [1], 1, 1]

 [1, 1, [1, 1], 1]

 [1, [1], 1, 1, 1]

 [1, [1], 1, [1], 1]

 [1, [1, 1], 1, 1]

 [1, [1, 1, 1], 1]

 [1, [1, [1], 1], 1]

 """

 if n < 0:

 return []

 if n == 0:

 return [[]]

 result = [[1] + rest for rest in nested_sums(n-1)]

 # E.g., make [1, 1, 1] from [1, 1]

 for k in range(1, n-1):

 for nest in nested_sums(k):

 result = result + ___

 return result

Build all the nested sums of
the form [1, [...], ...] where

the inner list has k 1's.

For n=5, nested_sums(n-1) has:

[1, 1, 1, 1]

[1, 1, [1], 1]

[1, [1], 1, 1]

[1, [1, 1], 1]

No 1 in between
these brackets!

Max and Min

Key Function for Max and Min

>>> s = [-3, -5, -4, -1, -2]

>>> max(s)

-1

>>> max(s, key=abs)

-5

>>> max([abs(x) for x in s])

5

7

Example: Two Lists

Given these two related lists of the same length:

xs = range(-10, 11)

ys = [x*x - 2*x + 1 for x in xs]

Write an expression that evaluates to the x for which the corresponding y is smallest:

8

>>> list(xs)

[-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> ys

[121, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> x_corresponding_to_min_y

1

