

Announcements

Dictionaries

{'Dem': 0}

Dictionary Comprehensions

{<key exp>: <value exp> for <name> in <iter exp> if <filter exp>}

Short version: {<key exp>: <value exp> for <name> in <iter exp>}

Data Abstraction

Data Abstraction

A small set of functions enforce an abstraction barrier between
representation and use

How data are represented (as some underlying list, dictionary, etc.)

How data are manipulated (as whole values with named parts)

E.g., refer to the parts of a line (affine function) called f:
-slope(f) instead of f[0] or f['slope'l
cy_intercept(f) instead of f[1] or f['y_intercept']

Why? Code becomes easier to read & revise

Trees

Tree Abstraction
Root of the whole tree or Root Node

Root label 4@ . o 4 .

Branch —>
(also a tree)

Root of a branch

'
'
'
.
.

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node

Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another
A tree starts at the root The top node is the root node

People often refer to labels by their locations: "each parent is the sum of its children"

Using the Tree Abstraction

For a tree t, you can only:

*Get the label for the root of the tree: label(t)
*Get the list of branches for the tree: branches(t)
eDetermine whether the tree is a leaf: is_leaf(t)

*Treat t as a value: return t, f(t), [t], s = t, etc.

(Demo)

Implementing the Tree Abstraction

def tree(label, branches=[]):

return [label]l + branches

def label(tree):
return treel[0]

def branches(tree):
return tree[l:]

* A tree has a root label
and a list of branches

« Each branch is a tree

3
1 2
/ AN
1 1

>>> tree(3, [tree(1),

tree(2, [tree(1),
- tree(1)1)1)
[3, [11, (2, [1], [1]]]

Implementing the Tree Abstraction

def tree(label, branches=[]): . - A tree has a root label
‘for branch in branches: \<{ Verifies the j and a list of branches

N Q§§?Eﬁmi§=ﬁfﬁﬁigﬁiﬂﬁhli"mFjee definition - Each branch is a tree

def label(tree): Creates a list 3
return treel0] from a sequence /////’ \\\\\
of branches
def branches(tree): — 1 2
return tree[1:] verifies that / N\
: tree 1s bound 1 1
to a list

def iS__’_C__If_Q_Q_(__’_C__If_Cf_Q_)_E ------------------- >>> tree(3, [tree(1),

if {type(tree) != listior len(tree) < 1: tree(2, [tree(1),
return False . tree(1)1)1)
for branch in branches(tree): [3, [11, [2, [1], [11]]

if not is_tree(branch):
return False
return True

def is leaf(tree):
return not branches(tree) (Demo)

Tree Processing

(Demo)

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

def count_leaves(t):
"""Count the leaves of a tree."""
if is_leaf(t):
return 1
else:
branch_counts = [count_leaves(b) for b in branches(t)]

return sum(branch_counts)

(Demo)

Example: Summing Paths

(Demo)

Example: Counting Paths

Count Paths that have a Total Label Sum

def count_paths(t, total):
"""Return the number of paths from the root to any node in tree t
for which the labels along the path sum to total.

>>> t = tree(3, [tree(-1), tree(1, [tree(2, [tree(1)]), tree(3)]), tree(1l, [tree(-1)1)1)
>>> count_paths(t, 3)<

2 5;ﬁ§i§n‘
>>> count_paths(t, 4)< B3 hE
2 R
>>> count_paths(t, 5) //////ﬁixtii\\\\<xx
@ EEE \:‘:i\ ‘\\
>>> count_paths(t, 6) —1 R, 1
1 O" ‘~ :‘= T -'v' ““:‘Q l“ :
>>> count_paths(t, 7)< SN (
%IIII E 2 ' \‘ 3 T 1
if label(t) == total: N
found = 1 i 1
else:
found = 0

return found + sum ([count_paths(b, total - label(t)) for b in branches(t)])

