Mutability

Announcements

Lab 5

Two Ways to Find Berries

def

def

berry_finder(t):

"""Return whether tree t contains a node labeled 'berry'.

>>> sproul = tree('roots',
[tree('branchl',

[tree('leaf"'),
tree('berry')]),

tree('branch2')])

>>> berry_finder(sproul)

True

if label(t) == 'berry':

return True
for b in branches(t):

if berry_finder(b): From Lecture 12:
return True sum, max, min, all, any
return False are built-in functions

that aggregate a sequence

berry_finder(t):

""""Return whether tree t conta£\//a node labeled 'berry'."""

return label(t) == 'berry' or

Using recursion to solve
tree problems:

Write down a recursive
call (usually on each
branch), then ask...

1.What kind of value 1is
returned from the call?

2.What does that value
mean?

3.How is that value
useful in implementing
the function?

any [berry_finder(b) for b in branches(t)])

List Mutation

(Demo)

https://pythontutor. com/cp, ograms. html#: 1%205,%207,%209, %201 i 1%2B1%29%5D&cunulat ive=t rue&curInst r=0mode=display&origin=compos ingprograms. s&py=3&rawInputLstISON=%58%5D

Building Lists Using Append

def sums(n, m):
"""Return lists that sum to n containing positive numbers up to m that
have no adjacent repeats, for n > @ and m > 0.

>>> sums(5, 1)

[]

>>> sums(5, 2)

[[2; 1; 2]]

>>> sums(5, 3)

rra, 3, 11, 12, 1, 21, [2, 31, [3, 211

>>> sums(5, 5)

(ry, 3, 11, I[1, 41, [2, 1, 21, (2, 31, [3, 21, [4, 11, [5]]

>>> sums (6, 3)

rra, 2, 1, 21, I11, 2, 31, I1, 3, 21, [2, 1, 2, 11, (2, 1, 31, [2, 3, 11, I3, 1, 21, [3, 2, 1]]

result = [] _
for k in range(1, min(m + 1, n)): # k is the first number of a list
for rest in sums (n—-k, m) .

if rest[0] !'= k:
result.append([Kl + rest) 4 pyild a list out of k and rest

if n <= m:
result.append([n])

return result (Demo)

https://pythontutor. com/cp/compos ingprograms. html#code=result:

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces

*This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" 1list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g
>>> Db
>>>
True

>>> Q.
>>> g

= [10]

append(20)

[10, 20]

>>> D

[10, 20]

>>> a
True

>>> g = [10]
>>> b = [10]
>>> g ==
True

>>> b.append(20)
>>> g

[10]

>>> Db

[10, 20]

>>> g ==
False

|dentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®@> and <expl> evaluate to the same object

Equality
<exp0> == <expl>

evaluates to True if both <exp@> and <expl> evaluate to equal values

Identical objects are always equal values

(Demo)

Mutation and Names

If multiple names refer to the same mutable object (directly or indirectly), then a change
to that object is reflected in the value of all of these names.

What numbers are printed (and how many of them)?

s =1[2, 7, [1, 8]]
t = s[2]
t.append([2])
e=5s+t

t[2].append(8)
print(e)

unulative=truescurInstr=6&mode=display&origin=composingprograms. js&py=3&rawInputLstISON=5B%5D

https://pythontutor.com/cp/composingprograns. html#code=s%20%3D%20%582, %207, %20%5B1,

Tuples

(Demo)

