
Generators

Announcements

Tree Practice

Spring 2023 Midterm 2 Question 4(a)
Implement exclude, which takes a tree t and a value x. It returns a tree containing the root
node of t as well as each non-root node of t with a label not equal to x. The parent of a
node in the result is its nearest ancestor node that is not excluded.

4

def exclude(t, x):

 """Return a tree with the non-root nodes of tree t labeled anything but x.

 >>> t = tree(1, [tree(2, [tree(2), tree(3), tree(4)]), tree(5, [tree(1)])])

 >>> exclude(t, 2)

 [1, [3], [4], [5, [1]]]

 >>> exclude(t, 1) # The root node cannot be excluded

 [1, [2, [2], [3], [4]], [5]]

 """

 filtered_branches = map(lambda y: _______________, branches(t))

 bs = []

 for b in filtered_branches:

 if ________________:

 bs.________(______________)

 else:

 bs.append(b)

 return tree(label(t), bs)

exclude(y, x)

label(b) == x

extend

1

2 5

12 43

In Spring 2023,
20% of students
got this right

37% of students
got this right

30% got
it right;
1 of 4
options

branches(b) 24% got
it right

2 5

12 43

2 5

12 3

1

4

Generators

Generators and Generator Functions

A generator function is a function that yields values instead of returning them

A normal function returns once; a generator function can yield multiple times

A generator is an iterator created automatically by calling a generator function

When a generator function is called, it returns a generator that iterates over its yields

6

(Demo)

>>> def plus_minus(x):

... yield x

... yield -x

>>> t = plus_minus(3)

>>> next(t)

3

>>> next(t)

-3

>>> t

<generator object plus_minus ...>

Spring 2023 Midterm 2 Question 5(b)

7

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.

For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)

Implement park, a generator function that yields all the ways, represented as strings, that
vehicles can be parked in n adjacent parking spots for positive integer n.

def park(n):

 """Yield the ways to park cars and motorcycles in n adjacent spots.

 >>> sorted(park(1))

 ['%', '.']

 >>> sorted(park(2))

 ['%%', '%.', '.%', '..', '<>']

 >>> len(list(park(4))) # some examples: '<><>', '.%%.', '%<>%', '%.<>'

 29

 """

Example: Call Expressions

Problem Definition

Imagine you can call only the following three functions:

- f(x): Subtracts one from an integer x

- g(x): Doubles an integer x

- h(x, y): Concatenates the digits of two different
positive integers x and y. For example, h(789, 12)
evaluates to 78912 and h(12, 789) evaluates to 12789.

Definition: A small expression is a call expression that
contains only f, g, h, the number 5, and parentheses. All
of these can be repeated. For example, h(g(5), f(f(5))) is
a small expression that evaluates to 103.

What's the shortest small expression you can find that
evaluates to 2023?

9

From Discussion 0: A Simple Restatement:

You start with 5. You can:

- Subtract 1 from a number

- Double a number

- Glue two numbers together

How do you get to 2023?

5➡10➡20
5➡4➡3➡2

5➡4➡3

A Computational Approach

Try all the small expressions with 4 function calls, then 5 calls, then 6 calls, etc.

10

f(f(f(f(5)))) -> 1

g(f(f(f(5)))) -> 4

f(g(f(f(5)))) -> 5

g(g(f(f(5)))) -> 12

f(f(g(f(5)))) -> 6

g(f(g(f(5)))) -> 14

f(g(g(f(5)))) -> 15

g(g(g(f(5)))) -> 32

f(f(f(g(5)))) -> 7

g(f(f(g(5)))) -> 16

f(g(f(g(5)))) -> 17

g(g(f(g(5)))) -> 36

f(f(g(g(5)))) -> 18

g(f(g(g(5)))) -> 38

f(g(g(g(5)))) -> 39

g(g(g(g(5)))) -> 80

h(f(5),f(f(5))) -> 43

h(f(5),g(f(5))) -> 48

h(f(5),f(g(5))) -> 49

h(f(5),g(g(5))) -> 420

h(g(5),f(f(5))) -> 103

h(g(5),g(f(5))) -> 108

h(g(5),f(g(5))) -> 109

h(g(5),g(g(5))) -> 1020

h(f(f(5)),f(5)) -> 34

h(f(f(5)),g(5)) -> 310

h(g(f(5)),f(5)) -> 84

h(g(f(5)),g(5)) -> 810

h(f(g(5)),f(5)) -> 94

h(f(g(5)),g(5)) -> 910

h(g(g(5)),f(5)) -> 204

h(g(g(5)),g(5)) -> 2010

f(h(f(5),f(5))) -> 43

g(h(f(5),f(5))) -> 88

f(h(f(5),g(5))) -> 409

g(h(f(5),g(5))) -> 820

f(h(g(5),f(5))) -> 103

g(h(g(5),f(5))) -> 208

f(h(g(5),g(5))) -> 1009

g(h(g(5),g(5))) -> 2020

Reminder: f(x) subtracts 1; g(x) doubles; h(x, y) concatenates

