
Attributes

Announcements

Method Calls

Dot Expressions

Methods are invoked using dot notation

<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name> in the object
that is the value of the <expression>

tom_account.deposit(10)

Dot expression
Call expression

4

(Demo)

Attribute Lookup

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

2. <name> is matched against the instance attributes of that object; if an
attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute value

4. That value is returned unless it is a function, in which case a bound method is
returned instead

6

Both instances and classes have attributes that can be looked up by dot expressions

Accessing Attributes

Using getattr, we can look up an attribute using a string

>>> tom_account.balance

10

 

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return:

•One of its instance attributes, or

•One of the attributes of its class

7

>>> getattr(tom_account, 'balance')

10

>>> hasattr(tom_account, 'deposit')

True

Class Attributes

The Class Statement

A class statement creates a new class and binds that class to <name> in the first frame of
the current environment

Assignment & def statements in <suite> create attributes of the class (not names in frames)

9

The suite is executed when the
class statement is executed.

>>> class Clown:

... nose = 'big and red'

... def dance():

... return 'No thanks'

...

>>> Clown.nose

'big and red'

>>> Clown.dance()

'No thanks'

>>> Clown

<class '__main__.Clown'>

class <name>:

 <suite>

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):

 self.balance = 0

 self.holder = account_holder

 # Additional methods would be defined here

The interest attribute is not part of
the instance; it's part of the class!

10

>>> tom_account = Account('Tom')

>>> jim_account = Account('Jim')

>>> tom_account.interest

0.02

>>> jim_account.interest

0.02

Bound Methods

Class 
Attributes  Functions 

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

A class is a type (or category) of objects

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Methods

Functions are objects

Bound methods are also objects: a function
that has its first parameter "self" already
bound to an instance

Dot expressions evaluate to bound methods for
class attributes that are functions

Terminology: Python object system:

12

<instance>.<method_name>

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)

<class 'function'>

>>> type(tom_account.deposit)

<class 'method'>

>>> Account.deposit(tom_account, 1001)

1011

>>> tom_account.deposit(1007)

2018

13

Function: all arguments within parentheses

Method: One object before the dot and
other arguments within parentheses

