
Inheritance

Announcements

Attributes & Methods

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

2. <name> is matched against the instance attributes of that object; if an
attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute value

4. That value is returned unless it is a function, in which case a bound method is
returned instead

4

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011
>>> tom_account.deposit(1007)
2018

5

Function: all arguments within parentheses

Method: One object before the dot and
other arguments within parentheses

(Demo)

Class Attributes

A class attribute can be accessed from either an instance or its class. There is only one
value for a class attribute, regardless of how many instances.

6

class Transaction:
 """A logged transaction.

 >>> s = [20, -3, -4]
 >>> ts = [Transaction(x) for x in s]
 >>> ts[1].balance()
 17
 >>> ts[2].balance()
 13
 """
 log = []

 def __init__(self, amount):
 self.amount = amount
 self.prior = list(self.log)
 self.log.append(self)

 def balance(self):
 return self.amount + sum([t.amount for t in self.prior])

Equivalently: list(type(self).log)

(Demo)

amount: -3
prior:

Transaction instance

amount: -4
prior:

Transaction instance

amount: 20
prior:

Transaction instance

empty list

log:
...

Transaction class List

Always bound to some
Transaction instance

Example: Close Friends
class Friend:
 def __init__(self, name):
 self.name = name
 self.heard_from = {}

 def hear_from(self, friend):
 if friend not in self.heard_from:
 self.heard_from[friend] = 0
 self.heard_from[friend] += 1
 friend.just_messaged = self

 def how_close(self, friend):
 bonus = 0

 if ______________________________ and ______________________________:
 bonus = 3

 return ______________________________ + bonus

 def closest(self, friends):

 return max(friends, key=______________________________)
7

hasattr(self, 'just_messaged') self.just_messaged == friend

friend.heard_from[self]

A Friend instance tracks the number of times they
hear_from each other friend.
A Friend just_messaged the friend that most recently
heard from them.
how_close is one Friend (self) to another (friend)?
• The number of times friend has heard from self
• Plus a bonus of 3 if they are the one that most
recently heard from self

self's closest friend among a list of friends is the
one with the largest self.how_close(friend) value

self.how_close

(Demo)

Attribute Assignment

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

9

Instance
attributes of
jim_account

Instance
attributes of
tom_account

