
Representation



Announcements



Inheritance



or
        return super().withdraw(      amount + self.withdraw_fee)

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom') 
>>> ch.interest     # Lower interest rate for checking accounts 
0.01 
>>> ch.deposit(20)  # Deposits are the same 
20 
>>> ch.withdraw(5)  # Withdrawals incur a $1 fee 
14

Most behavior is shared with the base class Account

class CheckingAccount(Account): 
    """A bank account that charges for withdrawals.""" 
    withdraw_fee = 1 
    interest = 0.01 
    def withdraw(self, amount): 
        return Account.withdraw(self, amount + self.withdraw_fee)

4



Looking Up Attribute Names on Classes

To look up a name in a class: 

1. If it names an attribute in the class, return the attribute value. 

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom')  # Calls Account.__init__ 
>>> ch.interest     # Found in CheckingAccount 
0.01 
>>> ch.deposit(20)  # Found in Account 
20 
>>> ch.withdraw(5)  # Found in CheckingAccount 
14

Base class attributes aren't copied into subclasses!

5



Example: Three Attributes

class A: 
    x, y, z = 0, 1, 2 

    def f(self): 
        return [self.x, self.y, self.z] 

class B(A): 
    """What would Python Do? 

    >>> A().f() 

    [0, 1, 2] 

    >>> B().f() 

    _____________ 

    """ 
    x = 6 
    def __init__(self): 
        self.z = 'A'

6

[6, 1, 'A']

x: 0
y: 1

A class

z: 2

x: 6
B class

z: 'A'
B instance

A instance



String Representations



String Representations

In Python, all objects produce two string representations: 

• The str is legible to humans 

• The repr is legible to the Python interpreter 

The str and repr strings are often the same, but not always

8

>>> from fractions import Fraction 
>>> half = Fraction(1, 2) 
>>> str(half) 
'1/2' 
>>> repr(half) 
'Fraction(1, 2)'





Class Practice



Spring 2023 Midterm 2 Question 2(a)
class Letter: 
    def __init__(self, contents): 

        self.contents = contents 

        __________________ 

    def send(self): 

        if self.sent: 

            print(self, 'was already sent.') 

        else: 
            print(self, 'has been sent.') 

            ________________ 

            return _____________________________ 

    def __repr__(self): 
        return self.contents 

11

   """A letter receives an all-caps reply. 

    >>> hi = Letter('Hello, World!') 
    >>> hi.send() 
    Hello, World! has been sent. 
    HELLO, WORLD! 
    >>> hi.send() 
    Hello, World! was already sent. 
    >>> Letter('Hey').send().send() 
    Hey has been sent. 
    HEY has been sent. 
    HEY 
    """

Implement the Letter class. A Letter has two 
instance attributes: contents (a str) and sent 
(a bool). Each Letter can only be sent once. 
The send method prints whether the letter was 
sent, and if it was, returns the reply, which 
is a new Letter instance with the same 
contents, but in all caps.   
Hint: 'hi'.upper() evaluates to 'HI'.

self.sent = False

self.sent = True

Letter(self.contents.upper())



Spring 2023 Midterm 2 Question 2(b)

class Numbered(Letter): 
    
    number = 0 

    def __init__(self, contents): 

        super().__init__(contents) 
         
        ____________________________ 

        ____________________________ 

    def __repr__(self): 

        return '#' + ___________________ 

12

    """A numbered letter has a different  
    repr method that shows its number. 

    >>> hey = Numbered('Hello, World!') 
    >>> hey.send() 
    #0 has been sent. 
    HELLO, WORLD! 
    >>> Numbered('Hi!').send() 
    #1 has been sent. 
    HI! 
    >>> hey 
    #0 
    """

Implement the Numbered class. A Numbered letter 
has a number attribute equal to how many 
numbered letters have previously been 
constructed. This number appears in its repr 
string. Assume Letter is implemented correctly. 

self.number = Numbered.number

Numbered.number += 1

str(self.number)


