
CS 61A Structure and Interpretation of Computer Programs
Summer 2019 Final

INSTRUCTIONS

• You have 3 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except three hand-written 8.5" × 11"
crib sheet of your own creation and the official CS 61A final study guide.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.
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All the work on this exam is my own.
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POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• You may use built-in Python functions that do not require import, such as min, max, pow, len, abs, sum, next,
iter, list, tuple, map, filter, zip, all, and any.

• You may not use example functions defined on your study guides unless a problem clearly states you can.

• For fill-in-the-blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

• You may use the Tree and Link classes defined on Page 4 (left column) of the Study Guide.
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1. (12 points) Calling Card

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. The first row is completed for you.

• If an error occurs, write Error, but include all output displayed before the error.

• To display a function value, write Function.

• If an expression would take forever to evaluate, write Forever.

The interactive interpreter displays the contents of the repr string of the value of a successfully evaluated
expression, unless it is None.

Assume that you have started python3 and executed the code shown on the left first, then you evaluate each
expression on the right in the order shown. Expressions evaluated by the interpreter have a cumulative effect.

1 class Card:
2 num = 0
3
4 def __init__(self, suit, rank):
5 self.suit = suit
6 self.rank = rank
7 Card.num += 1
8
9 def __eq__(self, card):

10 print(self.num)
11 return (self.suit == card.suit) \
12 and (self.rank == card.rank)
13
14 class Deck(Card):
15 suits = ['H', 'C']
16 ranks = ['A'] + list(range(2, 3))
17
18 def __init__(self, cards=[]):
19 self.cards = cards
20 if not cards:
21 for suit in self.suits:
22 for rank in self.ranks:
23 card = Card(suit, rank)
24 self.cards.append(card)
25
26 def get_cards(self):
27 i = 0
28 while i < 2:
29 yield self.suits[i]
30 i += 1
31 yield self.ranks
32
33 deck = Deck([])
34 Card.num += 1
35 cards = deck.get_cards()

Expression Output
print(None) None

Card('H', 'A') is Card('H', 'A')

Card.num != deck.num

Deck.__init__ = Card.__init__
Deck(Deck.suits[0],

Deck.ranks[1]).rank

deck == deck

next(cards)

list(cards)
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2. (10 points) Strangest Things
Fill in the environment diagram that results from executing the code
on the left until the entire program is finished, an error occurs, or all
frames are filled. You may not need to use all of the spaces or frames.
A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

• Use box-and-pointer diagrams for lists and tuples.

1 def stranger(strings):
2 mike = lambda s: dog.append(dog[0])
3 def strings(eleven):
4 nonlocal strings
5 strings = mike
6 return strings
7 return strings
8
9 def hopper():

10 i = 0
11 dog[i] = stranger(stranger)("mike")
12
13 dog = ['d', 'e', 'm', 'o']
14 strings = dog
15 stranger = stranger(dog)
16 hopper()

Global frame

stranger

hopper

dog

f1: [parent: ]

Return Value

f2: [parent: ]

0

Return Value

f3: [parent: ]

Return Value

f4: [parent: ]

Return Value None

func stranger(strings) [parent=Global]

func hopper() [parent=Global]
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3. (14 points) One More Time

Definition. An (n)-repeater for a single-argument function f takes a single argument x, calls f(x) n times,
then returns an (n+ 1)-repeater for f.

(a) (6 pt) Implement repeater, which takes a single-argument function f and a positive integer n. It returns
an (n)-repeater for f. Also implement the helper function repeat.

def repeater(f, n):
"""Return an (n)-repeater for f.

>>> r = repeater(print, 2)
>>> s = r('CS')
CS
CS
>>> t = s('CS')
CS
CS
CS
"""

def g(x):

______________________________________________________________________

return _______________________________________________________________

return ___________________________________________________________________

def repeat(f, x, n):
"""Call f(x) n times.

>>> repeat(print, 'Hello', 3)
Hello
Hello
Hello
"""

if ______________________________________________________________________:

_____________________________________________________________________

_____________________________________________________________________
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(b) (6 pt) Implement compound, which takes a single-argument function f and returns a single-argument function
g. When g is called for the nth time, it returns the result of calling f repeatedly n times. That is, the first
call g(x) returns f(x), the second call g(y) returns f(f(y)), and the third call g(z) returns f(f(f(z))).
Do not call repeat or repeater in your implementation.

def compound(f):
"""Return a function that, when called the nth time, applies f repeatedly n times.

>>> double = lambda y: 2 * y
>>> doubler = compound(double)
>>> doubler(3) # 1st call to doubler; double 3 one time
6
>>> doubler(5) # 2nd call to doubler; double 5 two times
20
>>> doubler(7) # 3rd call to doubler; double 7 three times
56
"""

h = _______________________________________________________________________________

def g(x):

_______________________________________________________________________________

h = ___________________________________________________________________________

return h(x)

return g

(c) (2 pt) Write the values bound to b and c that result from executing the code below, assuming compound is
implemented correctly.

increment = lambda x: x + 1
h = compound(compound(increment))
a, b, c = h(3), h(3), h(3)

b: _________________ c: _________________
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4. (14 points) Combo Nation

Definition. A combo of a non-negative integer n is the result of adding or multiplying the digits of n from
left to right, starting with 0. For n = 357, combos include 15 = (((0 + 3) + 5)+ 7), 35 = (((0 ∗ 3) + 5) ∗ 7), and
0 = (((0 ∗ 3) ∗ 5) ∗ 7), as well as 0, 7, 12, 22, 56, and 105. But 36 = ((0 + 3) ∗ (5 + 7)) is not a combo of 357.

(a) (6 pt) Implement is_combo, which takes non-negative integers n and k. It returns whether k is a combo of
n. You may assume that 0 is not one of the digits of n.

def is_combo(n, k):
"""Is k a combo of n?

>>> [k for k in range(1000) if is_combo(357, k)]
[0, 7, 12, 15, 22, 35, 56, 105]
"""
assert n >= 0 and k >= 0

if _______________________________________________________________________________:

return True

if _______________________________________________________________________________:

return False

rest, last = n // 10, n % 10

added = _______________________ and is_combo(_______________, ____________________)

multiplied = _______________________ and is_combo(_____________, _________________)

return added or multiplied
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(b) (4 pt) Implement apply_tree, which takes in two trees. The labels of the first tree are all functions.
apply_tree should mutate the the second tree such that each label is the result of applying each function
in the first tree to the corresponding node in the second tree.

You may assume the two trees have the same shape (that is, each node has the same number of children).

def apply_tree(fn_tree, val_tree):
""" Mutates val_tree by applying each function stored in fn_tree
to the corresponding labels in val_tree

>>> double = lambda x: x*2
>>> square = lambda x: x**2
>>> identity = lambda x: x
>>> t1 = Tree(double, [Tree(square), Tree(identity)])
>>> t2 = Tree(6, [Tree(2), Tree(10)])
>>> apply_tree(t1, t2)
>>> t2
Tree(12, [Tree(4), Tree(10)])
"""

___________________________________________________________________________

for __________________________ in _________________________________________:

_______________________________________________________________________

(c) (4 pt) Implement make_checker_tree which takes in a tree, t containing digits as its labels and returns a
tree with functions as labels (a function tree). When applied to another tree, the function tree should mutate
it so each label is True if the label is a combo of the number formed by concatenating the labels from the
root to the corresponding node of t. You may use is_combo in your solution.

The default argument for make_checker_tree is part of the solution, but will not be present in the initial call.

def make_checker_tree(t, so_far=0):
""" Returns a function tree that, when applied to another tree, will mutate its labels to be
True if the label is a combination of the path in t from the root to its corresponding node.

>>> t1 = Tree(5, [Tree(2), Tree(1)])
>>> fn_tree = make_checker_tree(t1)
>>> t2 = Tree(5, [Tree(10), Tree(7)])
>>> apply_tree(fn_tree, t2) #5 is a combo of 5, 10 is a combo of 52, 7 isn't a combo of 51
>>> t2
Tree(True, [Tree(True), Tree(False)])
"""

new_path = ________________________________________________________

branches = ________________________________________________________

fn = ______________________________________________________________

return Tree(fn, branches)
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5. (6 points) Back of the line

Implement a function bouncer that takes in a linked list and an index i and moves the value at index i of the
link to the end. You should mutate the input link.

You should implement swapper to help with your implementation.

You may assume that i is non-negative and less than the length of the linked list.

Use the following implementation of Link:

class Link:
"""A linked list."""
empty = ()

def __init__(self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

def __repr__(self):
if self.rest:

rest_str = ', ' + repr(self.rest)
else:

rest_str = ''
return 'Link({0}{1})'.format(self.first, rest_str)

You may not use any methods that are not given in the above implemenetation in your solution.

def bouncer(link, k):
"""
>>> lnk = Link(5, Link(2, Link(7, Link(9))))
>>> bouncer(lnk, 0)
>>> lnk
Link(2, Link(7, Link(9, Link(5))))
>>> bouncer(lnk, 2)
>>> lnk
Link(2, Link(7, Link(5, Link(9))))
"""

if ________________________________________________________________________:

_______________________________________________________________________

else:

_______________________________________________________________________

def swapper(link):

if ________________________________________________________________________:

return

_________________, _________________ = _________________, _________________

___________________________________________________________________________
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6. (2 points) Before we get to Scheme, some cons-ceptual questions

There are three problems here, which cover topics from the two special topics lectures. Each problem is worth
1 point, but you can only earn a maximum of 2 points on this problem, so you only need to know two answers.

Please make sure to fill in the bubble completely when answering. Each question has only one right answer.

(a) (1 pt) Security

Which of the following was NOT presented a defense against phishing in lecture?

# 2-Step Authentication
# Cross-Site Request Forgery
# U2F Keys
# Inspecting the grammar and spelling of a suspicious email

(b) (1 pt) Complexity

As presented in lecture, which of the following best describes the difference between a problem in P and
a problem in NP (but not in P)?

# It takes a long time to check if a solution is correct for a problem in NP (but not P), and a short time
for a problem in P
# Some problems in NP are uncomputable, but every problem in P is computable
# It takes a long time to come up with a solution for a problem in NP (but not P), and a short time for
a problem in P

(c) (1 pt) Computability

Which of the following was discussed as an implication of the halting problem in lecture?

# Under no circumstances can we determine if a program will terminate for any valid input
# It is impossible to write an antivirus that can always determine if a program will execute malicious
code
# The problem of determining if an arbitrary program will terminate on any input is NP-complete

7. (12 points) Procedure with Caution

Definition. A sequential procedure takes a non-negative integer i as an argument and returns the ith element
of an infinite sequence. The ith element of a sequential procedure f is (f i).

A sequential procedure starts at element 0 (so to get the first element for sequential procedure f, you’d call
(f 0))

Doctests are listed after the skeleton code for each question.

(a) (4 pt) Implement streamify, which takes a sequential procedure and returns a stream containing its ele-
ments.

(define (streamify f)

(define (g n)

__________________________________________________________)

________________________________________)

(streamify (lambda (n) 4)) ; An infinite stream of 4 4 4 4 ...
(streamify (lambda (n) (abs (- n 4)))) ; An infinite stream of 4 3 2 1 0 1 2 3 4 ...
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(b) (5 pt) Implement the Scheme procedure duplicate that returns the first duplicate element of a sequential
procedure. Assume a duplicate element exists. You may call the contains? procedure defined below.
Your procedure must be tail recurisve in order to receive credit.

(define (contains? s v)

(cond ((null? s) false)

((equal? (car s) v) true)

(else (contains? (cdr s) v))))

(define (duplicate f)

(define (helper ____________________________________________________________)

(if ______________________________________________________________________

______________________________________________________________________

(helper ______________________________________________________________)))

(helper ____________________________________________________________________))

(duplicate (lambda (n) 4)) ; returns 4, sequence is 4 [4] ...
(duplicate (lambda (n) (abs (- n 4)))) ; returns 1, sequence is 4 3 2 1 0 [1] 2 ...
(duplicate (lambda (n) (remainder (+ n 3) 4))) ; returns 3, sequence is 3 0 1 2 [3] 4 0 ...

(c) (3 pt) Implement slice, a macro that takes a sequential procedure f and a non-negative integer k using
the syntax (slice f at k). It returns a new sequential procedure whose ith element is element i+ k of f.
You may assume that after we create a slice for f that f will never be reassigned.

(define-macro (slice f at k)

_______________________________________________________)

(define (f x) (+ x 2)) ; f sequence is 2 3 4 5 6 7 ...
(define g (slice f at 3)) ; g sequence is 5 6 7 ...
(g 2) ; expect 7
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8. (10 points) The Big SQL

The ingredients table describes the dish and part for each part of each dish at a restaurant. The shops table
describes the food, shop, and price for each part of a dish sold at each of two shops. All ingredients (parts)
are sold by both shops, and each ingredient will only appear once for each shop. Write your SQL statements
so that they would still be correct if table contents changed. You can assume the shops table will only ever
contain two shops (A and B).

CREATE TABLE ingredients AS
SELECT "chili" AS dish, "beans" AS part UNION
SELECT "chili" , "onions" UNION
SELECT "soup" , "broth" UNION
SELECT "soup" , "onions" UNION
SELECT "beans" , "beans";

CREATE TABLE shops AS
SELECT "beans" AS food, "A" AS shop, 2 AS price UNION
SELECT "beans" , "B" , 2 AS price UNION
SELECT "onions" , "A" , 3 UNION
SELECT "onions" , "B" , 2 UNION
SELECT "broth" , "A" , 3 UNION
SELECT "broth" , "B" , 5;

(a) (2 pt) Select a two-column table with one row per food that describes the lowest price for each food.

SELECT food, _________________ FROM shops ________________________;

beans 2
broth 3
onions 2

(b) (4 pt) Select a two-column table with one row per dish that describes the total cost of each dish if all parts
are purchased from shop A.

SELECT ________________________ FROM _____________________________

WHERE __________________________________________________________;

beans 2
chili 5
soup 6

(c) (4 pt) In two different ways, select a one-column table of all foods that have a different price at each store.

SELECT _________ FROM __________________________________, __________________________________

WHERE ___________________________________________________________________________________;

SELECT _________ FROM shops GROUP BY _______________________________________________________;

onions
broth
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9. (0 points) The End

(a) (0 pt) Any feedback for us on how this exam went / your experience in the course?

(b) (0 pt) Use this space to draw a picture, write a note, or otherwise express yourself.


