Lecture #23: Complexity and Orders of Growth, contd.

Announcements:

 UCB Startup Fair, presented by CSUA, HKN, and IEEE. Bring resumes; find a job or internship! Tuesday, March 13 12-4pm in MLK Pauley Ballroom.

Review of Notation

- O(f) is the set of functions that eventually grow no faster than f: $O(f) \stackrel{\text{def}}{=} \{g \text{ such that } |g(x)| \leq p_g \cdot |f(x)| \text{ for all } x \geq M_g \}$, where p_g and M_g are constants (possibly different for each g).
- $\Omega(f)$ is the set of functions that eventually grow at least as fast as f:

$$\Omega(f) \stackrel{\text{def}}{=} \{g \text{ such that } |g(x)| \ge p_g \cdot |f(x)| \text{ for all } x \ge M_g \}$$

• Implies that

٠

$$g\in O(f) \text{ iff } f\in \Omega(g)$$

• Finally, $\Theta(f)$ is the set of functions eventually that grows like f: $\Theta(f) \stackrel{\text{def}}{=} O(f) \cap O(f)$

Notational Quirks

- We'll sometimes write things like $f \in O(g)$ even when f and g are functions of something non-numeric (like lists). In that case, when we say x > M in the definition of $O(\cdot)$, we are referring to some measure of x's size (like length).
- If $E_1(x)$ and $E_2(x)$ are two expressions involving x, we usually abbreviate $\lambda x : E_1(x) \in O(\lambda x : E_2(x))$ as just $E_1(x) \in O(E_2(x))$. For example, $n + 1 \in O(n^2)$.
- \bullet I write $f(x) \in O(g(x))$ where others write f(x) = O(g(x)), because the latter doesn't make sense.

Example: Linear Search

• Consider the following search function:

```
def near(L, x, delta):
"""True iff X differs from some member of sequence L by no
more than DELTA."""
for y in L:
    if abs(x-y) <= delta:
        return True
return False</pre>
```

- There's a lot here we don't know:
 - How long is sequence L?
 - Where in L is x (if it is)?
 - What kind of numbers are in L and how long do they take to compare?
 - How long do abs and subtract take?
 - How long does it take to create an iterator for L and how long does its __next__ operation take?
- So what can we meaningfully say about complexity of near?

What to Measure?

- If we want general answers, we have to introduce some "strategic vagueness."
- Instead of looking at times, we can consider number of "operations." Which?
- The total time consists of
 - 1. Some fixed overhead to start the function and begin the loop.
 - 2. Per-iteration costs: subtraction, abs, __next__, <=
 - 3. Some cost to end the loop.
 - 4. Some cost to return.
- So we can collect total operations into one "fixed-cost operation" (items 1, 3, 4), plus M(L) "loop operations" (item 2), where M(L) is the number of items in L up to and including the y that comes within delta of x (or the length of L if no match).

What Does an "Operation" Cost?

- But these "operations" are of different kinds and complexities, so what do we really know?
- Assuming that each operation represents some range of possible minimum and maximum values (constants), we can say that

```
 \begin{array}{l} {\it min-fixed-cost} + M({\sf L}) \times {\it min-loop-cost} \\ \leq \\ C_{\rm near}(L) \\ \leq \\ {\it max-fixed-cost} + M({\sf L}) \times {\it max-loop-cost} \end{array} \end{array}
```

where $C_{\rm near}(L)$ is the cost of near on a list where the program has to look at M(L) items.

Using Asymptotic Estimates

• We have a rather clumsy description:

 $\begin{array}{l} \textit{min-fixed-cost} + M(L) \times \textit{min-loop-cost} \leq C_{\text{near}}(L) \\ \leq \textit{max-fixed-cost} + M(L) \times \textit{max-loop-cost} \end{array}$

- Claim: we can state this more cleanly as $C_{\text{near}}(L) \in O(M(L))$ and $C_{\text{near}}(L) \in \Omega(M(L))$, or even more concisely: $C_{\text{near}}(L) \in \Theta(M(L))$.
- Why? $C_{\text{near}}(M(L)) \in O(M(L))$ if $C_{\text{near}}(M(L)) \leq K \cdot M(L)$ for sufficiently large M(L), by definition.
- And if if K_1 and K_2 are any (non-negative) constants, then $K_1 + K_2 \cdot M(L) \leq (K_1 + K_2) \cdot M(L)$ for M(L) > 1.
- Likewise, $K_1 + K_2 \cdot M(L) \ge K_2 \cdot M(L)$ for M > 0.
- And we can go even farther. If the sequence, L, has length N(L), then we know that $M(L) \leq N(L)$. Therefore, we can say $C_{\text{near}}(L) \in O(N(L))$.
- Is $C_{\text{near}}(L) \in \Omega(N(L))$?

Using Asymptotic Estimates

• We have a rather clumsy description:

 $\begin{array}{l} \textit{min-fixed-cost} + M(L) \times \textit{min-loop-cost} \leq C_{\text{near}}(L) \\ \leq \textit{max-fixed-cost} + M(L) \times \textit{max-loop-cost} \end{array}$

- Claim: we can state this more cleanly as $C_{\text{near}}(L) \in O(M(L))$ and $C_{\text{near}}(L) \in \Omega(M(L))$, or even more concisely: $C_{\text{near}}(L) \in \Theta(M(L))$.
- Why? $C_{\text{near}}(M(L)) \in O(M(L))$ if $C_{\text{near}}(M(L)) \leq K \cdot M(L)$ for sufficiently large M(L), by definition.
- And if if K_1 and K_2 are any (non-negative) constants, then $K_1 + K_2 \cdot M(L) \leq (K_1 + K_2) \cdot M(L)$ for M(L) > 1.
- Likewise, $K_1 + K_2 \cdot M(L) \ge K_2 \cdot M(L)$ for M > 0.
- And we can go even farther. If the sequence, L, has length N(L), then we know that $M(L) \leq N(L)$. Therefore, we can say $C_{\text{near}}(L) \in O(N(L))$.
- Is $C_{\text{near}}(L) \in \Omega(N(L))$? No: can only say $C_{\text{near}}(L) \in \Omega(1)$.

Best/Worst Cases

- We can simplify still further by not trying to give results for particular inputs, but instead giving summary results for all inputs of the same "size."
- Here, "size" depends on the problem: could be magnitude, length (of list), cardinality (of set), etc.
- Since we don't consider specific inputs, we have to be less precise.
- Typically, the figure of interest is the *worst case over all inputs of the same size*.
- Also makes sense to talk about the *best case* over all inputs of the same size, or the *average case* over all inputs of the same size (weighted by likelihood). These are rarer, though.
- From preceding discussion, since $C_{\text{near}}(N(L)) \in O(N(L))$, it follows that $C_{\text{wc}}(N) \in O(N)$, where $C_{\text{wc}}(N)$ is "worst-case cost of near over all lists of size N."

Best of the Worst

- We just saw that $C_{wc}(N) \in O(N)$.
- But in addition, it's also clear that $C_{wc}(N) \in \Omega(N)$.
- So we can say, most concisely, $C_{\mathrm{wc}}(N) \in \Theta(N)$.
- \bullet Generally, when a worst-case time is not $\Theta(\cdot),$ it indicates either that
 - We don't know (haven't proved) what the worst case really is, just put limits on it, or
 - * Most often happens when we talk about the worst-case for a problem: "what's the worst case for the best possible algorithm?"
 - We know what the worst-case time is, but it's not an easy formula, so we settle for approximations that are easier to deal with.

Example: A Nested Loop

• Consider:

```
def are_duplicates(L):
for i in range(len(L)-1):
    for j in range(i+1, len(L)):
        if L[i] == L[j]:
            return True
return False
```

- \bullet What can we say about C(L), the cost of computing are_duplicates on L?
- \bullet How about $C_{\rm wc}(N),$ the worst-case cost of running are_duplicates over all sequences of length N?

Example: A Nested Loop (II)

- Ans: Worst case is no duplicates. Outer loop runs len(L)-1 times. Each time, the inner loop runs len(L)-i-1 times. So total time is proportional to $(N-2) + (N-3) + \ldots + 1 = (N-1)(N-2)/2 \in \Theta(N^2)$, where N = N(L) is the length of L.
- \bullet Best case is first two elements are duplicates. Running time is $\Theta(1)$ (i.e., bounded by constant).
- \bullet So, $C(L)\in O(N(L)^2)$, $C(L)\in \Omega(1)$,
- And $C_{\mathrm{wc}}(N) \in \Theta(N^2)$.

Example: A Tricky Nested Loop

• What can we say about this one (assume pred counts as one constanttime operation.)

```
def is_unduplicated(L, pred):
"""True iff the first x in L such that pred(x) is not
a duplicate. Also true if there is no x with pred(x)."""
i = 0
while i < len(L):
    x = L[i]
    i += 1
    if pred(x):
        while i < len(L):
            if x == L[i]:
                return False
            i += 1
return True
```

Example: A Tricky Nested Loop (II)

- In this case, despite the nested loop, we read each element of L at most once.
- Best case is that pred(L[0]) and L[0]=L[1].
- So $C(L)\in O(N(L))$, $C(L)\in \Omega(1).$
- And $C_{\mathrm{wc}}(N) \in \Theta(N)$.

Some Useful Properties

- We've already seen that $\Theta(K_0N + K_1) = \Theta(N)$ (K, k, K_i here and elsewhere are constants).
- $\Theta(N^k + N^{k-1}) = \Theta(N^k)$. Why?
- $\Theta(|f(N)| + |g(N)|) = \Theta(\max(|f(N)|, |g(N)|)).$ Why?
- $\Theta(\log_a N) = \Theta(\log_b N)$. Why? (As a result, we usually use $\log_2 N = \log N$ for all logarithms.)
- Tricky: why isn't $\Theta(f(N) + g(N)) = \Theta(\max(f(N), g(N)))$?
- $\Theta(N^{k_1}) \subset \Theta(k_2^N)$, if $k_2 > 1$. Why?

- How long does the tree_find program (search binary tree) take in the worst case
 - 1. As a function of D, the depth of the tree?
 - 2. As a function of N, the number of keys in the tree?
 - 3. As a function of D if the tree is as shallow as possible for the amount of data?
 - 3. As a function of N if the tree is as shallow as possible for the amount of data?
- How about the gen_tree_find program from HW#8? Consider all trees where the inner nodes all have at least $K_1 > 2$ children and at most K_2 (both constants). What is the worst-case time to search as a function of N?

- How long does the tree_find program (search binary tree) take in the worst case
 - 1. As a function of D, the depth of the tree? $\Theta(D)$
 - 2. As a function of N, the number of keys in the tree?
 - 3. As a function of D if the tree is as shallow as possible for the amount of data?
 - 3. As a function of N if the tree is as shallow as possible for the amount of data?
- How about the gen_tree_find program from HW#8? Consider all trees where the inner nodes all have at least $K_1 > 2$ children and at most K_2 (both constants). What is the worst-case time to search as a function of N?

- How long does the tree_find program (search binary tree) take in the worst case
 - 1. As a function of D, the depth of the tree? $\Theta(D)$
 - 2. As a function of N, the number of keys in the tree? $\Theta(N)$
 - 3. As a function of D if the tree is as shallow as possible for the amount of data?
 - 3. As a function of N if the tree is as shallow as possible for the amount of data?
- How about the gen_tree_find program from HW#8? Consider all trees where the inner nodes all have at least $K_1 > 2$ children and at most K_2 (both constants). What is the worst-case time to search as a function of N?

- How long does the tree_find program (search binary tree) take in the worst case
 - 1. As a function of D, the depth of the tree? $\Theta(D)$
 - 2. As a function of N, the number of keys in the tree? $\Theta(N)$
 - 3. As a function of D if the tree is as shallow as possible for the amount of data? $\Theta(D)$
 - 3. As a function of N if the tree is as shallow as possible for the amount of data?
- How about the gen_tree_find program from HW#8? Consider all trees where the inner nodes all have at least $K_1 > 2$ children and at most K_2 (both constants). What is the worst-case time to search as a function of N?

- How long does the tree_find program (search binary tree) take in the worst case
 - 1. As a function of D, the depth of the tree? $\Theta(D)$
 - 2. As a function of N, the number of keys in the tree? $\Theta(N)$
 - 3. As a function of D if the tree is as shallow as possible for the amount of data? $\Theta(D)$
 - 3. As a function of N if the tree is as shallow as possible for the amount of data? $\Theta(\lg N)$
- How about the gen_tree_find program from HW#8? Consider all trees where the inner nodes all have at least $K_1 > 2$ children and at most K_2 (both constants). What is the worst-case time to search as a function of N?

- How long does the tree_find program (search binary tree) take in the worst case
 - 1. As a function of D, the depth of the tree? $\Theta(D)$
 - 2. As a function of N, the number of keys in the tree? $\Theta(N)$
 - 3. As a function of D if the tree is as shallow as possible for the amount of data? $\Theta(D)$
 - 3. As a function of N if the tree is as shallow as possible for the amount of data? $\Theta(\lg N)$
- How about the gen_tree_find program from HW#8? Consider all trees where the inner nodes all have at least $K_1 > 2$ children and at most K_2 (both constants). What is the worst-case time to search as a function of N? $\Theta(\lg N)$

Fast Growth

• Consider Hackenmax from Test#2 (with some name changes):

```
def Hakenmax(board, X, Y, N):
if N <= 0:
    return 0
else:
    return board(X, Y) \
        + max(Hakenmax(board, X+1, Y, N-1),
        Hakenmax(board, X, Y+1, N-1))</pre>
```

• Time clearly depends on N. Counting calls to board, C(N), the cost of calling Hackenmax(board, X, Y, N), is

$$C(N) = \begin{cases} 0, & \text{for } N \leq 0\\ 1 + 2C(N-1), & \text{otherwise.} \end{cases}$$

• Using simple-minded expansion,

 $C(N) = 1 + 2C(N-1) = 1 + 2 + 4C(N-2) = \dots = 1 + 2 + 4 + 8 + \dots + 2^{N-1} \in \Theta(2^N).$

Some Intuition on Meaning of Growth

- How big a problem can you solve in a given time?
- In the following table, left column shows time in microseconds to solve a given problem as a function of problem size N (assuming perfect scaling and that problem size 1 takes 1μ sec).
- Entries show the size of problem that can be solved in a second, hour, month (31 days), and century, for various relationships between time required and problem size.
- N = problem size

Time (μ sec) for	Max N Possible in			
problem size N	1 second	1 hour	1 month	1 century
$\lg N$	10^{300000}	$10^{1000000000}$	$10^{8 \cdot 10^{11}}$	$10^{9 \cdot 10^{14}}$
N	10^{6}	$3.6 \cdot 10^{9}$	$2.7\cdot10^{12}$	$3.2 \cdot 10^{15}$
$N \lg N$	63000	$1.3 \cdot 10^{8}$	$7.4 \cdot 10^{10}$	$6.9 \cdot 10^{13}$
N^2	1000	60000	$1.6 \cdot 10^{6}$	$5.6 \cdot 10^{7}$
N^3	100	1500	14000	150000
2^N	20	32	41	51