
Lecture #23: Complexity and Orders of Growth, contd.

Announcements:

• UCB Startup Fair, presented by CSUA, HKN, and IEEE.
Bring resumes; find a job or internship!
Tuesday, March 13 12-4pm in MLK Pauley Ballroom.

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 1

Review of Notation

• O(f) is the set of functions that eventually grow no faster than f :

O(f) def= {g such that |g(x)| ≤ pg · |f(x)| for all x ≥ Mg}

, where pg and Mg are constants (possibly different for each g).

• Ω(f) is the set of functions that eventually grow at least as fast as
f :

Ω(f) def= {g such that |g(x)| >= pg · |f(x)| for all x ≥ Mg}

.

• Implies that
g ∈ O(f) iff f ∈ Ω(g)

.

• Finally, Θ(f) is the set of functions eventually that grows like f :

Θ(f) def= O(f) ∩ O(f)

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 2

Notational Quirks

• We’ll sometimes write things like f ∈ O(g) even when f and g are
functions of something non-numeric (like lists). In that case, when
we say x > M in the definition of O(·), we are referring to some
measure of x’s size (like length).

• If E1(x) and E2(x) are two expressions involving x, we usually ab-
breviate λx : E1(x) ∈ O(λx : E2(x)) as just E1(x) ∈ O(E2(x)). For
example, n + 1 ∈ O(n2).

• I write f(x) ∈ O(g(x)) where others write f(x) = O(g(x)), because
the latter doesn’t make sense.

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 3

Example: Linear Search

• Consider the following search function:

def near(L, x, delta):

"""True iff X differs from some member of sequence L by no

more than DELTA."""

for y in L:

if abs(x-y) <= delta:

return True

return False

• There’s a lot here we don’t know:

– How long is sequence L?

– Where in L is x (if it is)?

– What kind of numbers are in L and how long do they take to com-
pare?

– How long do abs and subtract take?

– How long does it take to create an iterator for L and how long
does its next operation take?

• So what can we meaningfully say about complexity of near?

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 4

What to Measure?

• If we want general answers, we have to introduce some “strategic
vagueness.”

• Instead of looking at times, we can consider number of “operations.”
Which?

• The total time consists of

1. Some fixed overhead to start the function and begin the loop.

2. Per-iteration costs: subtraction, abs, next , <=

3. Some cost to end the loop.

4. Some cost to return.

• So we can collect total operations into one “fixed-cost operation”
(items 1, 3, 4), plus M(L) “loop operations” (item 2), where M(L) is
the number of items in L up to and including the y that comes within
delta of x (or the length of L if no match).

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 5

What Does an “Operation” Cost?

• But these “operations” are of different kinds and complexities, so
what do we really know?

• Assuming that each operation represents some range of possible
minimum and maximum values (constants), we can say that

min-fixed-cost + M(L) ×min-loop-cost

≤

Cnear(L)

≤

max-fixed-cost + M(L) ×max-loop-cost

where Cnear(L) is the cost of near on a list where the program has
to look at M(L) items.

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 6

Using Asymptotic Estimates

• We have a rather clumsy description:

min-fixed-cost + M(L) × min-loop-cost ≤ Cnear(L)

≤ max-fixed-cost + M(L) ×max-loop-cost

• Claim: we can state this more cleanly as Cnear(L) ∈ O(M(L)) and
Cnear(L) ∈ Ω(M(L)), or even more concisely: Cnear(L) ∈ Θ(M(L)).

• Why? Cnear(M(L)) ∈ O(M(L)) if Cnear(M(L)) ≤ K · M(L) for suffi-
ciently large M(L), by definition.

• And if if K1 and K2 are any (non-negative) constants, then K1 + K2 ·
M(L) ≤ (K1 + K2) · M(L) for M(L) > 1.

• Likewise, K1 + K2 · M(L) ≥ K2 · M(L) for M > 0.

• And we can go even farther. If the sequence, L, has length N(L),
then we know that M(L) ≤ N(L). Therefore, we can say Cnear(L) ∈
O(N(L)).

• Is Cnear(L) ∈ Ω(N(L))?

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 7

Using Asymptotic Estimates

• We have a rather clumsy description:

min-fixed-cost + M(L) × min-loop-cost ≤ Cnear(L)

≤ max-fixed-cost + M(L) ×max-loop-cost

• Claim: we can state this more cleanly as Cnear(L) ∈ O(M(L)) and
Cnear(L) ∈ Ω(M(L)), or even more concisely: Cnear(L) ∈ Θ(M(L)).

• Why? Cnear(M(L)) ∈ O(M(L)) if Cnear(M(L)) ≤ K · M(L) for suffi-
ciently large M(L), by definition.

• And if if K1 and K2 are any (non-negative) constants, then K1 + K2 ·
M(L) ≤ (K1 + K2) · M(L) for M(L) > 1.

• Likewise, K1 + K2 · M(L) ≥ K2 · M(L) for M > 0.

• And we can go even farther. If the sequence, L, has length N(L),
then we know that M(L) ≤ N(L). Therefore, we can say Cnear(L) ∈
O(N(L)).

• Is Cnear(L) ∈ Ω(N(L))? No: can only say Cnear(L) ∈ Ω(1).

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 7

Best/Worst Cases

• We can simplify still further by not trying to give results for par-
ticular inputs, but instead giving summary results for all inputs of
the same “size.”

• Here, “size” depends on the problem: could be magnitude, length (of
list), cardinality (of set), etc.

• Since we don’t consider specific inputs, we have to be less precise.

• Typically, the figure of interest is the worst case over all inputs of
the same size.

• Also makes sense to talk about the best case over all inputs of
the same size, or the average case over all inputs of the same size
(weighted by likelihood). These are rarer, though.

• From preceding discussion, since Cnear(N(L)) ∈ O(N(L)), it follows
that Cwc(N) ∈ O(N), where Cwc(N) is “worst-case cost of near over
all lists of size N .”

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 8

Best of the Worst

• We just saw that Cwc(N) ∈ O(N).

• But in addition, it’s also clear that Cwc(N) ∈ Ω(N).

• So we can say, most concisely, Cwc(N) ∈ Θ(N).

• Generally, when a worst-case time is not Θ(·), it indicates either
that

– We don’t know (haven’t proved) what the worst case really is, just
put limits on it, or

∗ Most often happens when we talk about the worst-case for a
problem: “what’s the worst case for the best possible algo-
rithm?”

– We know what the worst-case time is, but it’s not an easy formula,
so we settle for approximations that are easier to deal with.

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 9

Example: A Nested Loop

• Consider:

def are_duplicates(L):

for i in range(len(L)-1):

for j in range(i+1, len(L)):

if L[i] == L[j]:

return True

return False

• What can we say about C(L), the cost of computing are duplicates
on L?

• How about Cwc(N), the worst-case cost of running are duplicates
over all sequences of length N?

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 10

Example: A Nested Loop (II)

• Ans: Worst case is no duplicates. Outer loop runs len(L)-1 times.
Each time, the inner loop runs len(L)-i-1 times. So total time is pro-
portional to (N − 2) + (N − 3) + . . . + 1 = (N − 1)(N − 2)/2 ∈ Θ(N 2),
where N = N(L) is the length of L.

• Best case is first two elements are duplicates. Running time is Θ(1)
(i.e., bounded by constant).

• So, C(L) ∈ O(N(L)2), C(L) ∈ Ω(1),

• And Cwc(N) ∈ Θ(N 2).

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 11

Example: A Tricky Nested Loop

• What can we say about this one (assume pred counts as one constant-
time operation.)

def is_unduplicated(L, pred):

"""True iff the first x in L such that pred(x) is not

a duplicate. Also true if there is no x with pred(x)."""

i = 0

while i < len(L):

x = L[i]

i += 1

if pred(x):

while i < len(L):

if x == L[i]:

return False

i += 1

return True

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 12

Example: A Tricky Nested Loop (II)

• In this case, despite the nested loop, we read each element of L at
most once.

• Best case is that pred(L[0]) and L[0]=L[1].

• So C(L) ∈ O(N(L)), C(L) ∈ Ω(1).

• And Cwc(N) ∈ Θ(N).

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 13

Some Useful Properties

• We’ve already seen that Θ(K0N + K1) = Θ(N) (K, k, Ki here and
elsewhere are constants).

• Θ(Nk + Nk−1) = Θ(Nk). Why?

• Θ(|f(N)| + |g(N)|) = Θ(max(|f(N)|, |g(N)|)). Why?

• Θ(loga N) = Θ(logb N). Why? (As a result, we usually use log2 N =
lg N for all logarithms.)

• Tricky: why isn’t Θ(f(N) + g(N)) = Θ(max(f(N), g(N)))?

• Θ(Nk1) ⊂ Θ(kN
2), if k2 > 1. Why?

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 14

More Programs

• How long does the tree find program (search binary tree) take in
the worst case

– 1. As a function of D, the depth of the tree?

– 2. As a function of N , the number of keys in the tree?

– 3. As a function of D if the tree is as shallow as possible for the
amount of data?

– 3. As a function of N if the tree is as shallow as possible for the
amount of data?

• How about the gen tree find program from HW#8? Consider all
trees where the inner nodes all have at least K1 > 2 children and at
most K2 (both constants). What is the worst-case time to search as
a function of N?

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 15

More Programs

• How long does the tree find program (search binary tree) take in
the worst case

– 1. As a function of D, the depth of the tree? Θ(D)

– 2. As a function of N , the number of keys in the tree?

– 3. As a function of D if the tree is as shallow as possible for the
amount of data?

– 3. As a function of N if the tree is as shallow as possible for the
amount of data?

• How about the gen tree find program from HW#8? Consider all
trees where the inner nodes all have at least K1 > 2 children and at
most K2 (both constants). What is the worst-case time to search as
a function of N?

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 15

More Programs

• How long does the tree find program (search binary tree) take in
the worst case

– 1. As a function of D, the depth of the tree? Θ(D)

– 2. As a function of N , the number of keys in the tree? Θ(N)

– 3. As a function of D if the tree is as shallow as possible for the
amount of data?

– 3. As a function of N if the tree is as shallow as possible for the
amount of data?

• How about the gen tree find program from HW#8? Consider all
trees where the inner nodes all have at least K1 > 2 children and at
most K2 (both constants). What is the worst-case time to search as
a function of N?

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 15

More Programs

• How long does the tree find program (search binary tree) take in
the worst case

– 1. As a function of D, the depth of the tree? Θ(D)

– 2. As a function of N , the number of keys in the tree? Θ(N)

– 3. As a function of D if the tree is as shallow as possible for the
amount of data? Θ(D)

– 3. As a function of N if the tree is as shallow as possible for the
amount of data?

• How about the gen tree find program from HW#8? Consider all
trees where the inner nodes all have at least K1 > 2 children and at
most K2 (both constants). What is the worst-case time to search as
a function of N?

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 15

More Programs

• How long does the tree find program (search binary tree) take in
the worst case

– 1. As a function of D, the depth of the tree? Θ(D)

– 2. As a function of N , the number of keys in the tree? Θ(N)

– 3. As a function of D if the tree is as shallow as possible for the
amount of data? Θ(D)

– 3. As a function of N if the tree is as shallow as possible for the
amount of data? Θ(lg N)

• How about the gen tree find program from HW#8? Consider all
trees where the inner nodes all have at least K1 > 2 children and at
most K2 (both constants). What is the worst-case time to search as
a function of N?

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 15

More Programs

• How long does the tree find program (search binary tree) take in
the worst case

– 1. As a function of D, the depth of the tree? Θ(D)

– 2. As a function of N , the number of keys in the tree? Θ(N)

– 3. As a function of D if the tree is as shallow as possible for the
amount of data? Θ(D)

– 3. As a function of N if the tree is as shallow as possible for the
amount of data? Θ(lg N)

• How about the gen tree find program from HW#8? Consider all
trees where the inner nodes all have at least K1 > 2 children and at
most K2 (both constants). What is the worst-case time to search as
a function of N? Θ(lg N)

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 15

Fast Growth

• Consider Hackenmax from Test#2 (with some name changes):

def Hakenmax(board, X, Y, N):

if N <= 0:

return 0

else:

return board(X, Y) \

+ max(Hakenmax(board, X+1, Y, N-1),

Hakenmax(board, X, Y+1, N-1))

• Time clearly depends on N. Counting calls to board, C(N),the cost
of calling Hackenmax(board,X,Y,N), is

C(N) =

0, for N ≤ 0
1 + 2C(N − 1), otherwise.

• Using simple-minded expansion,

C(N) = 1+2C(N−1) = 1+2+4C(N−2) = . . . = 1+2+4+8+. . .+2N−1 ∈ Θ(2N).

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 16

Some Intuition on Meaning of Growth

• How big a problem can you solve in a given time?

• In the following table, left column shows time in microseconds to
solve a given problem as a function of problem size N (assuming
perfect scaling and that problem size 1 takes 1µsec).

• Entries show the size of problem that can be solved in a second,
hour, month (31 days), and century, for various relationships be-
tween time required and problem size.

• N = problem size

Time (µsec) for Max N Possible in
problem size N 1 second 1 hour 1 month 1 century

lg N 10300000 101000000000 108·10
11

109·10
14

N 106 3.6 · 109 2.7 · 1012 3.2 · 1015

N lg N 63000 1.3 · 108 7.4 · 1010 6.9 · 1013

N 2 1000 60000 1.6 · 106 5.6 · 107

N 3 100 1500 14000 150000
2N 20 32 41 51

Last modified: Fri Mar 16 02:21:43 2012 CS61A: Lecture #23 17

	Lecture #23: Complexity and Orders of Growth, contd.
	Review of Notation
	Notational Quirks
	Example: Linear Search
	What to Measure?
	What Does an ``Operation'' Cost?
	Using Asymptotic Estimates
	Best/Worst Cases
	Best of the Worst
	Example: A Nested Loop
	Example: A Nested Loop (II)
	Example: A Tricky Nested Loop
	Example: A Tricky Nested Loop (II)
	Some Useful Properties
	More Programs
	Fast Growth
	Some Intuition on Meaning of Growth

