
Lecture #6: Abstraction and Objects

Last modified: Fri Mar 2 00:43:45 2012 CS61A: Lecture #6 1

Pig Contest Rules

• The score for an entry is the sum of win rates against every other
entry.

• All strategies must be deterministic functions of the current score!
Non-deterministic strategies will be disqualified.

• Winner: 3 points extra credit on Project 1

• Second place: 2 points

• Third place: 1 point

• The real prize: honor and glory

• To enter: submit a file pig.py that contains a function called final strategy

via the command submit proj1-contest by Monday, 2/13.

Last modified: Fri Mar 2 00:43:45 2012 CS61A: Lecture #6 2

Decorators: Pythonic Use of Higher-Order Functions

• The syntax

@expr
def func(expr):

body

is equivalent to

def func(expr):
body

func = expr(func)

• For example, our ucb module defines decorator trace. After

from ucb import trace

@trace

def mysum(x, y):

return x + y

mysum will print its arguments and return value each time it is called.

• Usually, expr is a simple name, but it can be any expression that
takes and returns a function.

Last modified: Fri Mar 2 00:43:45 2012 CS61A: Lecture #6 3

Functional Abstraction

Consider two implementations of polynomial evaluation:
def quadratic_val(a, b, c, x):

"""The value of A*X**2+B*X+C."""

return a*x**2 + b*x + c

def quadratic_val(a, b, c, x):

"""The value of A*X**2+B*X+C."""

return c + x*(b + x*a)

• Both have the same name, signature, and (for integers) values.

• To use them, that’s all we need—the implementations are irrelevant.

• There is a separation of concerns here:

– The caller (client) is concerned with providing values of x, a, b,
and c and using the result, but not how the result is computed.

– The implementor is concerned with how the result is computed,
but not where x, a, b, and c come from or how the value is used.

– From the client’s point of view, quadratic val is an abstraction
from the set of possible ways to compute this result.

– We call this particular kind functional abstraction.

• Programming is largely about choosing abstractions that lead to clear,
fast, and maintainable programs.

Last modified: Fri Mar 2 00:43:45 2012 CS61A: Lecture #6 4

Guidelines for Defining Functions (I)

• Each function should have exactly one, logically coherent and well
defined job.

– Intellectual manageability.

– Ease of testing.

• Functions should be properly documented, either by having names
(and parameter names) that are unambiguously understandable, or
by having comments (docstrings in Python) that accurately describe
them.

– Should be able to understand code that calls a function without
reading the body of the function.

• Don’t Repeat Yourself (DRY).

– Simplifies revisions.

– Isolates problems.

Last modified: Fri Mar 2 00:43:45 2012 CS61A: Lecture #6 5

Guidelines for Defining Functions (II)

• Corollary of DRY: Make functions general

– copy-paste leads to maintenance headaches

• Keep names of functions and parameters meaningful:

Instead of Use
boolean turn is over

d dice
helper take turn

(Bowling example From Kernighan&Plauger):
y score
L ball
f frame

Last modified: Fri Mar 2 00:43:45 2012 CS61A: Lecture #6 6



Data Abstraction

• Functions are abstractions that represents computations and ac-
tions.

• In the old days, one described programs as hierarchies of actions:
procedural decomposition.

• Starting in the 1970’s, emphasis moved to the data that the func-
tions operate on.

• An abstract data type represents some kind of thing and the oper-
ations upon it.

• We can usefully organize our programs around the abstract data
types in them.

• We could just organize our documentation into sections describing
the abstract data types we conceptually use,

• But modern programming languages tend to have specific features
and syntax for this purpose: object-oriented programming.

Last modified: Fri Mar 2 00:43:45 2012 CS61A: Lecture #6 7

Objects in Python

• In Python 3, every value is an object.

• Varieties of object correspond (roughly) to classes (types).

• Each object has some set of attributes, accessible using dot nota-
tion, which are values:

– E.Attr, where E is a simple expression and Attr is a name, means
“the current value of the Attr attribute of the value of E.”

• Among these attributes are those whose values are a kind of func-
tion known as a method.

• For historical reasons or convenience, there are often alternative
ways to access attributes than dot notation:

x.__add__(y) add(x, y) or x+y
L.__getitem__(k) L[k]
x.__len__() len(x)
x.__eq__(y) x == y

Last modified: Fri Mar 2 00:43:45 2012 CS61A: Lecture #6 8

Primitive Types: Numbers

• A primitive type is one that is built into a language, possibly with
characteristics or syntax that cannot be written into user-defined
types.

• In Python, numbers are such types: have their own literals and in-
ternal attributes that are not accessible to the programmer.

• Python distinguishes four types:

– int: Integers.

– bool: Limited integers restricted to values that denote true and
false.

– float: A subset of the rational numbers used to approximate real-
valued quantities.

– complex: A subset of the rational complex numbers used to ap-
proximate complex-valued quantities.

• Let’s look briefly at one of them: float.

Last modified: Fri Mar 2 00:43:45 2012 CS61A: Lecture #6 9

Floating-point

• It would be nice if we could represent general real arithmetic effi-
ciently, but we can’t.

• Even if we restrict ourselves to the rationals, simple computations
can become quite slow (denominators can grow exponentially).

• Since we don’t usually need absolute accuracy, floating-point was
devised as a compromise.

• Typically, (i.e., according to the IEEE Floating-point standard, to
which Berkeley faculty (Prof. Kahan) made major contributions), the
floating-point numbers are the set

{±s · 2
e | 0 ≤ s < 2

53
, − 1023 ≤ e + 53 ≤ 1024} ∪ {±∞,−0, . . .}

allowing us to represent numbers with maximum magnitude up to 21024

and non-zero magnitudes as small as 2−1074.

• s is the significand, e is the exponent.

Last modified: Fri Mar 2 00:43:45 2012 CS61A: Lecture #6 10

Floating-point Approximation Visualized

• To make things manageable, suppose we restrict s to the range 0–3,
and e to the range -3 to 1

• Then the set of positive floating-point numbers would look like this
on a number line:

0 1 2 3 4 5 6 7 . . .

• Numbers get farther apart for larger magnitudes.

• Arithmetic results on these numbers that fall between the repre-
sented numbers are rounded to a represented number. (Therein lies
much confusion.)

• Although this means that the approximation error increases for
larger numbers, the relative error—ratio of the error in an approx-
imated number to the magnitude of the number—does not, which is
the reason for choosing the floating-point representation.

• Also means that the number of significant digits (more precisely,
significant bits) remains about the same.

Last modified: Fri Mar 2 00:43:45 2012 CS61A: Lecture #6 11


	Lecture #6: Abstraction and Objects
	Pig Contest Rules
	Decorators: Pythonic Use of Higher-Order Functions
	Functional Abstraction
	Guidelines for Defining Functions (I)
	Guidelines for Defining Functions (II)
	Data Abstraction
	Objects in Python
	Primitive Types: Numbers
	Floating-point
	Floating-point Approximation Visualized

