
CS61A Lecture 8

Amir Kamil
UC Berkeley

February 8, 2013

 HW3 out, due Tuesday at 7pm
 Midterm next Wednesday at 7pm

 Keep an eye out for your assigned location
 Old exams posted
 Review sessions

 Saturday 2-4pm in 2050 VLSB
 Extended office hours Sunday 11-3pm in 310 Soda
 HKN review session Sunday 3-6pm in 145 Dwinelle

 Environment diagram handout on website
 Code review system online

 See Piazza post for details

Announcements

Newton’s Method

Begin with a function f and
an initial guess x

 (x, f(x))

-f(x)/f'(x)

-f(x)

Visualization: http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Compute the value of f at the guess: f(x)

Compute the derivative of f at the guess: f'(x)

Update guess to be:

http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

What guess should start the computation?

How do we know when we are finished?

Implementation questions:

Update:

Babylonian Method

x - f(x)/f'(x)

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

What guess should start the computation?

How do we know when we are finished?

Implementation questions:

Update:

x - f(x)/f'(x)

Iterative Improvement

def iter_improve(update, done, guess=1, max_updates=1000):
 """Iteratively improve guess with update until done
 returns a true value.

 >>> iter_improve(golden_update, golden_test)
 1.618033988749895
 """
 k = 0
 while not done(guess) and k < max_updates:
 guess = update(guess)
 k = k + 1
 return guess

First, identify common structure.
Then define a function that generalizes the procedure.

Newton’s Method for nth Roots

def nth_root_func_and_derivative(n, a):
 def root_func(x):
 return pow(x, n) - a
 def derivative(x):
 return n * pow(x, n-1)
 return root_func, derivative

def nth_root_newton(a, n):
 """Return the nth root of a.

 >>> nth_root_newton(8, 3)
 2.0
 """
 root_func, deriv = nth_root_func_and_derivative(n, a)
 def update(x):
 return x - root_func(x) / deriv(x)
 def done(x):
 return root_func(x) == 0
 return iter_improve(update, done)

x – f(x)/f’(x)

Definition of a function zero

Exact derivative

The factorial of a non-negative integer n is

Factorial

The factorial of a non-negative integer n is

This is called a recurrence relation;
Factorial is defined in terms of itself
Can we write code to compute factorial using the
same pattern?

Factorial

We can compute factorial using the direct definition

Computing Factorial

def factorial(n):
 if n == 0 or n == 1:
 return 1
 total = 1
 while n >= 1:
 total, n = total * n, n - 1
 return total

Can we compute it using the recurrence relation?

This is much shorter! But can a function call itself?

Computing Factorial

def factorial(n):
 if n == 0 or n == 1:
 return 1
 return n * factorial(n - 1)

Let’s see what happens!

Factorial Environment Diagram

Example: http://goo.gl/NjCKG

Compute 4!

Compute 3!

Compute 2!

Compute 1!

http://goo.gl/NjCKG

A function is recursive if the body calls the function itself, either
directly or indirectly

Recursive functions have two important components:
1. Base case(s), where the function directly computes an

answer without calling itself
2. Recursive case(s), where the function calls itself as part of

the computation

Recursive Functions

def factorial(n):
 if n == 0 or n == 1:
 return 1
 return n * factorial(n - 1)

Recursive
case

Base case

Names typically don’t matter for correctness,
but they matter tremendously for legibility

Use names for repeated compound expressions

Use names for meaningful parts of compound expressions

Practical Guidance: Choosing Names

boolean turn_is_over d dice play_helper take_turn

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

h = sqrt(square(a) + square(b))
if h > 1:
 x = x + h

x = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

disc_term = sqrt(square(b) - 4 * a * c)
x = (-b + disc_term) / (2 * a)

Sometimes, removing repetition requires restructuring the code

Practical Guidance: DRY

def find_quadratic_root(a, b, c, plus=True):
 """Applies the quadratic formula to the polynomial
 ax^2 + bx + c."""
 if plus:
 return (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)
 else:
 return (-b - sqrt(square(b) - 4 * a * c)) / (2 * a)

def find_quadratic_root(a, b, c, plus=True):
 """Applies the quadratic formula to the polynomial
 ax^2 + bx + c."""
 disc_term = sqrt(square(b) - 4 * a * c)
 if not plus:
 disc_term *= -1
 return (-b + disc_term) / (2 * a)

Write the test of a function before you write a
function

A test will clarify the (one) job of the function
Your tests can help identify tricky edge cases

Develop incrementally and test each piece before
moving on

You can’t depend upon code that hasn’t been tested
Run your old tests again after you make new changes

Test-Driven Development

	CS61A Lecture 8
	Announcements
	Newton’s Method
	Special Case: Square Roots
	Special Case: Cube Roots
	Iterative Improvement
	Newton’s Method for nth Roots
	Factorial
	Factorial
	Computing Factorial
	Computing Factorial
	Factorial Environment Diagram
	Recursive Functions
	Practical Guidance: Choosing Names
	Practical Guidance: DRY
	Test-Driven Development

