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 HW3 out, due Tuesday at 7pm 
 Midterm next Wednesday at 7pm 

 Keep an eye out for your assigned location 
 Old exams posted 
 Review sessions 

 Saturday 2-4pm in 2050 VLSB 
 Extended office hours Sunday 11-3pm in 310 Soda 
 HKN review session Sunday 3-6pm in 145 Dwinelle 

 Environment diagram handout on website 
 Code review system online 

 See Piazza post for details 

Announcements 



Newton’s Method 

Begin with a function f and  
an initial guess x 

 (x, f(x)) 

-f(x)/f'(x) 

-f(x) 

Visualization: http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif 

Compute the value of f at the guess: f(x) 

Compute the derivative of f at the guess: f'(x) 

Update guess to be:  

http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif


Special Case: Square Roots 

How to compute square_root(a) 

Idea: Iteratively refine a guess x about the square root of a 

What guess should start the computation? 

How do we know when we are finished? 

Implementation questions: 

Update: 

Babylonian Method 

x - f(x)/f'(x) 



Special Case: Cube Roots 

How to compute cube_root(a) 

Idea: Iteratively refine a guess x about the cube root of a 

What guess should start the computation? 

How do we know when we are finished? 

Implementation questions: 

Update: 

x - f(x)/f'(x) 



Iterative Improvement 

def iter_improve(update, done, guess=1, max_updates=1000): 
    """Iteratively improve guess with update until done 
    returns a true value. 
 
    >>> iter_improve(golden_update, golden_test) 
    1.618033988749895 
    """ 
    k = 0 
    while not done(guess) and k < max_updates: 
        guess = update(guess) 
        k = k + 1 
    return guess 

First, identify common structure. 
Then define a function that generalizes the procedure.  



Newton’s Method for nth Roots 

def nth_root_func_and_derivative(n, a): 
    def root_func(x): 
        return pow(x, n) - a 
    def derivative(x): 
        return n * pow(x, n-1) 
    return root_func, derivative 
 
def nth_root_newton(a, n): 
    """Return the nth root of a. 
 
    >>> nth_root_newton(8, 3) 
    2.0 
    """ 
    root_func, deriv = nth_root_func_and_derivative(n, a) 
    def update(x): 
        return x - root_func(x) / deriv(x) 
    def done(x): 
        return root_func(x) == 0 
    return iter_improve(update, done) 

x – f(x)/f’(x) 

Definition of a function zero 

Exact derivative 



The factorial of a non-negative integer n is 
 

Factorial 



The factorial of a non-negative integer n is 
 
 

 
 
This is called a recurrence relation; 
Factorial is defined in terms of itself 
Can we write code to compute factorial using the 
same pattern? 

Factorial 



We can compute factorial using the direct definition 

 
 

Computing Factorial 

def factorial(n): 
    if n == 0 or n == 1: 
        return 1 
    total = 1 
    while n >= 1: 
        total, n = total * n, n - 1 
    return total 



Can we compute it using the recurrence relation? 
 

 
 

 
 
 
 
 

This is much shorter! But can a function call itself? 

Computing Factorial 

def factorial(n): 
    if n == 0 or n == 1: 
        return 1 
    return n * factorial(n - 1) 



Let’s see what happens! 

Factorial Environment Diagram 

Example: http://goo.gl/NjCKG 

Compute 4! 

Compute 3! 

Compute 2! 

Compute 1! 

http://goo.gl/NjCKG


A function is recursive if the body calls the function itself, either 
directly or indirectly 
 

Recursive functions have two important components: 
1. Base case(s), where the function directly computes an 

answer without calling itself 
2. Recursive case(s), where the function calls itself as part of 

the computation 

Recursive Functions 

def factorial(n): 
    if n == 0 or n == 1: 
        return 1 
    return n * factorial(n - 1) 

Recursive 
case 

Base case 



Names typically don’t matter for correctness, 
but they matter tremendously for legibility 
 
 

Use names for repeated compound expressions 

 
 
 

 
Use names for meaningful parts of compound expressions 

Practical Guidance: Choosing Names 

boolean turn_is_over d dice play_helper take_turn 

if sqrt(square(a) + square(b)) > 1: 
    x = x + sqrt(square(a) + square(b)) 

h = sqrt(square(a) + square(b)) 
if h > 1: 
    x = x + h 

x = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a) 

disc_term = sqrt(square(b) - 4 * a * c) 
x = (-b + disc_term) / (2 * a) 



Sometimes, removing repetition requires restructuring the code 

Practical Guidance: DRY 

def find_quadratic_root(a, b, c, plus=True): 
    """Applies the quadratic formula to the polynomial 
    ax^2 + bx + c.""" 
    if plus: 
        return (-b + sqrt(square(b) - 4 * a * c)) / (2 * a) 
    else: 
        return (-b - sqrt(square(b) - 4 * a * c)) / (2 * a) 

def find_quadratic_root(a, b, c, plus=True): 
    """Applies the quadratic formula to the polynomial 
    ax^2 + bx + c.""" 
    disc_term = sqrt(square(b) - 4 * a * c) 
    if not plus: 
        disc_term *= -1 
    return (-b + disc_term) / (2 * a) 



Write the test of a function before you write a 
function 

A test will clarify the (one) job of the function 
Your tests can help identify tricky edge cases 

 
Develop incrementally and test each piece before 
moving on 

You can’t depend upon code that hasn’t been tested 
Run your old tests again after you make new changes 

Test-Driven Development 
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