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 HW4 due today at 11:59pm 
 
 
 

 Hog contest deadline on Friday 
 Completely optional, opportunity for extra credit 
 See website for details 

Announcements 



Can be tricky! Iteration is a special case of recursion 
Idea: Figure out what state must be maintained by the function 

Converting Recursion to Iteration 

def summation(n, term): 
    if n == 0: 
        return 0 
    return summation(n - 1, term) + term(n) 

What's summed so far? How to get each 
incremental piece 

def summation_iter(n, term): 
    total = 0 
    while n > 0: 
        total, n = total + term(n), n – 1 
    return total 

Termination 
condition 

Initial value 



More formulaic: Iteration is a special case of recursion 
Idea: The state of iteration can be passed as parameters 

Converting Iteration to Recursion 

def fib_iter(n): 
    if n == 0: 
        return 0 
    fib_n, fib_n_1, k = 1, 0, 1 
    while k < n: 
        fib_n, fib_n_1 = fib_n + fib_n_1, fib_n 
        k = k + 1 
    return fib_n 

def fib_rec(n, fib_n, fib_n_1, k): 
    if n == 0: 
        return 0 
    if k >= n: 
        return fib_n 
    return fib_rec(n, fib_n + fib_n_1, fib_n, k + 1) 

Local names become… 

Parameters in a 
recursive function 



Mutual recursion is when the recursive process is split 
across multiple functions 
 
 
 
 
Decorating a recursive function generally results in 
mutual recursion 

Mutual Recursion 

@trace1 
def factorial(n): 
    if n == 0: 
        return 1 
    return n * factorial(n-1) 

Example: http://goo.gl/4LZZv 

http://goo.gl/4LZZv


We have used higher-order functions to produce a function to 
add a constant to its argument 
What if we wanted to do the same for multiplication? 

Currying 

def make_adder(n): 
    def adder(k): 
        return add(n, k) 
    return adder 
 
>>> make_adder(2)(3) 
5 
>>> add(2, 3) 
5 

def make_multiplier(n): 
    def multiplier(k): 
        return mul(n, k) 
    return multiplier 
 
>>> make_multiplier(2)(3) 
6 
>>> mul(2, 3) 
6 

Same relationship 
between functions 

How can we do this in general without repeating ourselves? 



First, identify common structure. 
Then define a function that generalizes the procedure.  

Currying 

def make_adder(n): 
    def adder(k): 
        return add(n, k) 
    return adder 
 
>>> make_adder(2)(3) 
5 
>>> add(2, 3) 
5 

def curry2(f): 
    def outer(n): 
        def inner(k): 
            return f(n, k) 
        return inner 
    return outer 
 
>>> curry2(mul)(2)(3) 
6 
>>> mul(2, 3) 
6 

This process of converting a multi-argument function to 
consecutive single-argument functions is called currying. 



Functional Abstractions 

def square(x): 
    return mul(x, x) 

def sum_squares(x, y): 
    return square(x) + square(y) 

• square takes one argument. 

• square has the intrinsic name square. 

• square computes the square of a number. 

• square computes the square by calling mul. 

def square(x): 
    return pow(x, 2) 

def square(x): 
    return mul(x, x-1) + x 

If the name “square” were bound to a built-in function, 
sum_squares would still work identically  

Yes 
No 

Yes 
No 

What does sum_squares need to know about square? 



Data: the things that programs fiddle with 
Primitive values are the simplest type of data 

Integers: 2, 3, 2013, -837592010 
Floating point (decimal) values: -4.5, 98.6 
Booleans: True, False 

How do we represent more 
complex data? 
We need data 
abstractions! 

What is Data? 



Data Abstraction 
All 

Program
m

ers 
Great 

Program
m

ers 
Compound data combine smaller pieces of data 
together 

 A date: a year, month, and day 
 A geographic position: latitude and logitude 

An abstract data type lets us manipulate compound 
data as a unit 

Isolate two parts of any program that uses data 
 How data are represented (as parts) 
 How data are manipulated (as units) 

Data abstraction: A methodology by which functions 
enforce an abstraction barrier between representation 
and use 



Rational Numbers 

Exact representation of fractions 

A pair of integers 

As soon as division occurs, the exact representation is lost! 

Assume we can compose and decompose rational numbers: 

numerator 
denominator 

• rational(n, d) returns a rational number x 

• numer(x) returns the numerator of x 

• denom(x) returns the denominator of x 

Constructor 

Selectors 



Rational Number Arithmetic 
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Rational Number Arithmetic Code 

def mul_rational(x, y): 
    return rational(numer(x) * numer(y), 
                    denom(x) * denom(y)) 

• rational(n, d) returns a rational number x 

• numer(x) returns the numerator of x 

• denom(x) returns the denominator of x 

Constructor 
Selectors 

Wishful 
thinking 

def add_rational(x, y): 
    nx, dx = numer(x), denom(x) 
    ny, dy = numer(y), denom(y) 
    return rational(nx * dy + ny * dx, dx * dy) 
 
def eq_rational(x, y): 
    return numer(x) * denom(y) == numer(y) * denom(x) 
 



Tuples 

>>> pair = (1, 2) 
>>> pair 
(1, 2) 
 
>>> x, y = pair 
>>> x 
1 
>>> y 
2 
 
>>> pair[0] 
1 
>>> pair[1] 
2 
>>> from operator import getitem 
>>> getitem(pair, 0) 
1 
>>> getitem(pair, 1) 
2 

A tuple literal: 
Comma-separated expression 

"Unpacking" a tuple 

Element selection 

More tuples next lecture 



Representing Rational Numbers 

def rational(n, d): 
    """Construct a rational number x that represents 
    n/d.""" 
    return (n, d) 

from operator import getitem 
 
def numer(x): 
    """Return the numerator of rational number x.""" 
    return getitem(x, 0) 
 
def denom(x): 
    """Return the denominator of rational number 
    x.""" 
    return getitem(x, 1) 

Construct a tuple 

Select from a tuple 
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