
CS61A Lecture 13

Amir Kamil
UC Berkeley

February 20, 2013

 HW4 due today at 11:59pm

 Hog contest deadline on Friday
 Completely optional, opportunity for extra credit
 See website for details

Announcements

Can be tricky! Iteration is a special case of recursion
Idea: Figure out what state must be maintained by the function

Converting Recursion to Iteration

def summation(n, term):
 if n == 0:
 return 0
 return summation(n - 1, term) + term(n)

What's summed so far? How to get each
incremental piece

def summation_iter(n, term):
 total = 0
 while n > 0:
 total, n = total + term(n), n – 1
 return total

Termination
condition

Initial value

More formulaic: Iteration is a special case of recursion
Idea: The state of iteration can be passed as parameters

Converting Iteration to Recursion

def fib_iter(n):
 if n == 0:
 return 0
 fib_n, fib_n_1, k = 1, 0, 1
 while k < n:
 fib_n, fib_n_1 = fib_n + fib_n_1, fib_n
 k = k + 1
 return fib_n

def fib_rec(n, fib_n, fib_n_1, k):
 if n == 0:
 return 0
 if k >= n:
 return fib_n
 return fib_rec(n, fib_n + fib_n_1, fib_n, k + 1)

Local names become…

Parameters in a
recursive function

Mutual recursion is when the recursive process is split
across multiple functions

Decorating a recursive function generally results in
mutual recursion

Mutual Recursion

@trace1
def factorial(n):
 if n == 0:
 return 1
 return n * factorial(n-1)

Example: http://goo.gl/4LZZv

http://goo.gl/4LZZv

We have used higher-order functions to produce a function to
add a constant to its argument
What if we wanted to do the same for multiplication?

Currying

def make_adder(n):
 def adder(k):
 return add(n, k)
 return adder

>>> make_adder(2)(3)
5
>>> add(2, 3)
5

def make_multiplier(n):
 def multiplier(k):
 return mul(n, k)
 return multiplier

>>> make_multiplier(2)(3)
6
>>> mul(2, 3)
6

Same relationship
between functions

How can we do this in general without repeating ourselves?

First, identify common structure.
Then define a function that generalizes the procedure.

Currying

def make_adder(n):
 def adder(k):
 return add(n, k)
 return adder

>>> make_adder(2)(3)
5
>>> add(2, 3)
5

def curry2(f):
 def outer(n):
 def inner(k):
 return f(n, k)
 return inner
 return outer

>>> curry2(mul)(2)(3)
6
>>> mul(2, 3)
6

This process of converting a multi-argument function to
consecutive single-argument functions is called currying.

Functional Abstractions

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

• square takes one argument.

• square has the intrinsic name square.

• square computes the square of a number.

• square computes the square by calling mul.

def square(x):
 return pow(x, 2)

def square(x):
 return mul(x, x-1) + x

If the name “square” were bound to a built-in function,
sum_squares would still work identically

Yes
No

Yes
No

What does sum_squares need to know about square?

Data: the things that programs fiddle with
Primitive values are the simplest type of data

Integers: 2, 3, 2013, -837592010
Floating point (decimal) values: -4.5, 98.6
Booleans: True, False

How do we represent more
complex data?
We need data
abstractions!

What is Data?

Data Abstraction
All

Program
m

ers
Great

Program
m

ers
Compound data combine smaller pieces of data
together

 A date: a year, month, and day
 A geographic position: latitude and logitude

An abstract data type lets us manipulate compound
data as a unit

Isolate two parts of any program that uses data
 How data are represented (as parts)
 How data are manipulated (as units)

Data abstraction: A methodology by which functions
enforce an abstraction barrier between representation
and use

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation is lost!

Assume we can compose and decompose rational numbers:

numerator
denominator

• rational(n, d) returns a rational number x

• numer(x) returns the numerator of x

• denom(x) returns the denominator of x

Constructor

Selectors

Rational Number Arithmetic

3

2

3

5
*

9

10
=

3

2

3

5
+

21

10
=

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

Example: General Form:

Rational Number Arithmetic Code

def mul_rational(x, y):
 return rational(numer(x) * numer(y),
 denom(x) * denom(y))

• rational(n, d) returns a rational number x

• numer(x) returns the numerator of x

• denom(x) returns the denominator of x

Constructor
Selectors

Wishful
thinking

def add_rational(x, y):
 nx, dx = numer(x), denom(x)
 ny, dy = numer(y), denom(y)
 return rational(nx * dy + ny * dx, dx * dy)

def eq_rational(x, y):
 return numer(x) * denom(y) == numer(y) * denom(x)

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

A tuple literal:
Comma-separated expression

"Unpacking" a tuple

Element selection

More tuples next lecture

Representing Rational Numbers

def rational(n, d):
 """Construct a rational number x that represents
 n/d."""
 return (n, d)

from operator import getitem

def numer(x):
 """Return the numerator of rational number x."""
 return getitem(x, 0)

def denom(x):
 """Return the denominator of rational number
 x."""
 return getitem(x, 1)

Construct a tuple

Select from a tuple

	CS61A Lecture 13
	Announcements
	Converting Recursion to Iteration
	Converting Iteration to Recursion
	Mutual Recursion
	Currying
	Currying
	Functional Abstractions
	What is Data?
	Data Abstraction
	Rational Numbers
	Rational Number Arithmetic
	Rational Number Arithmetic Code
	Tuples
	Representing Rational Numbers

