
CS61A Lecture 15

Amir Kamil
UC Berkeley

February 25, 2013

 HW5 due on Wednesday

 Trends project out

 Partners are required; find one in lab or on Piazza
Will not work in IDLE
 New bug submission policy; see Piazza

Announcements

The Sequence Abstraction

There isn't just one sequence type (in Python or in general)

This abstraction is a collection of behaviors:

red, orange, yellow, green, blue, indigo, violet.

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer index less
than its length, starting at 0 for the first element.

 0 , 1 , 2 , 3 , 4 , 5 , 6 .

The sequence abstraction is shared among several types,
including tuples.

Recursive Lists

Constructor:
def rlist(first, rest):
 """Return a recursive list from its first element and
 the rest."""

 Selectors:
def first(s):
 """Return the first element of recursive list s."""

def rest(s):
 """Return the remaining elements of recursive list s."""

 Behavior condition(s):

If a recursive list s is constructed from a first element f
and a recursive list r, then
• first(s) returns f, and
• rest(s) returns r, which is a recursive list.

Implementing Recursive Lists Using Pairs

A recursive list is
a pair

The first element of the
pair is the first element

of the list

The second element of
the pair is the rest of

the list

None
represents
the empty

list

1 , 2 , 3 , 4

Example: http://goo.gl/fVhbF

http://goo.gl/fVhbF

Implementing the Sequence Abstraction

def len_rlist(s):
 """Return the length of recursive list s."""
 if s == empty_rlist:
 return 0
 return 1 + len_rlist(rest(s))

def getitem_rlist(s, i):
 """Return the element at index i of recursive list s."""
 if i == 0:
 return first(s)
 return getitem_rlist(rest(s), i - 1)

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer index less
than its length, starting at 0 for the first element.

Built-in sequence types provide the following behavior

Python Sequence Abstraction

Type-specific
constructor

>>> a = (1, 2, 3)
>>> b = tuple([4, 5, 6, 7])

Length >>> len(a), len(b)
(3, 4)

Element
selection

>>> a[1], b[-1]
(2, 7)

Slicing >>> a[1:3], b[1:1], a[:2], b[1:]
((2, 3), (), (1, 2), (5, 6, 7))

Membership >>> 2 in a, 4 in a, 4 not in b
(True, False, False)

Count from the end;
-1 is last element

Python has a special statement for iterating over the
elements in a sequence

Sequence Iteration

def count(s, value):
 total = 0

 for elem in s:
 if elem == value:
 total += 1
 return total

Name bound in the first
frame of the current

environment

For Statement Execution Procedure

for <name> in <expression>:
 <suite>

1. Evaluate the header <expression>, which must yield an
iterable value.

2. For each element in that sequence, in order:

A. Bind <name> to that element in the first frame of the
current environment.

B. Execute the <suite>.

Sequence Unpacking in For Statements

>>> pairs = ((1, 2), (2, 2), (2, 3), (4, 4))

>>> same_count = 0

A sequence of
fixed-length sequences

A name for each element in
a fixed-length sequence

Each name is bound to a value,
as in multiple assignment

>>> for x, y in pairs:
 if x == y:
 same_count = same_count + 1

>>> same_count
2

The Range Type

>>> tuple(range(-2, 3))
(-2, -1, 0, 1, 2)

>>> tuple(range(4))
(0, 1, 2, 3)

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

range(-2, 3)

Length: ending value - starting value

Element selection: starting value + index

Tuple constructor

With a 0 starting value

String Literals

>>> 'I am string!'
'I am string!'
>>> "I've got an apostrophe"
"I've got an apostrophe"
>>> '您好'
'您好'

>>> """The Zen of Python
claims, Readability counts.
Read more: import this."""
'The Zen of Python\nclaims, Readability counts.\nRead
more: import this.'
 "Line feed" character

represents a new line A backslash "escapes" the
following character

Single- and double-quoted
strings are equivalent

Strings Are Sequences

The in and not in operators match substrings
>>> 'here' in "Where's Waldo?"
True

Why? Working with strings, we care about words, not characters

>>> city = 'Berkeley'
>>> len(city)
8
>>> city[3]
'k'

An element of a string is
itself a string!

Some Python sequences support arithmetic operations

Sequence Arithmetic

>>> city = 'Berkeley'
>>> city + ', CA'
'Berkeley, CA'

>>> "Don't repeat yourself! " * 2
"Don't repeat yourself! Don’t repeat yourself! "

>>> (1, 2, 3) * 3
(1, 2, 3, 1, 2, 3, 1, 2, 3)

>>> (1, 2, 3) + (4, 5, 6, 7)
(1, 2, 3, 4, 5, 6, 7)

Concatenate

Repeat twice

We can apply a function to every element in a sequence
This is called mapping the function over the sequence

We can extract elements that satisfy a given condition

We can compute the sum of all elements

Both map and filter produce an iterable, not a sequence

Sequences as Conventional Interfaces

>>> fibs = tuple(map(fib, range(8)))
>>> fibs
(0, 1, 1, 2, 3, 5, 8, 13)

>>> even_fibs = tuple(filter(is_even, fibs))
>>> even_fibs
(0, 2, 8)

>>> sum(even_fibs)
10

Iterables

Iterables provide access to some elements in order but do not
provide length or element selection

Python-specific construct; more general than a sequence

Many built-in functions take iterables as argument

For statements also operate on iterable values.

tuple Construct a tuple containing the elements

map Construct a map that results from applying the given function
to each element

filter Construct a filter with elements that satisfy the given condition
sum Return the sum of the elements
min Return the minimum of the elements
max Return the maximum of the elements

Generator Expressions

(<map exp> for <name> in <iter exp> if <filter exp>)

One large expression that combines mapping and filtering to
produce an iterable

No-filter version: (<map exp> for <name> in <iter exp>)

• Evaluates to an iterable.

• <iter exp> is evaluated when the generator expression is
evaluated.

• Remaining expressions are evaluated when elements are
accessed.

Precise evaluation rule introduced in Chapter 4.

Reducing a Sequence

Reduce is a higher-order generalization of max, min, and sum.

>>> from operator import mul
>>> from functools import reduce
>>> reduce(mul, (1, 2, 3, 4, 5), 1)
120

Like accumulate from Homework 2, but with iterables

First argument:
A two-argument

function

Second argument:
an iterable object

Optional initial
value as third

argument

def accumulate(combiner, start, n, term):
 return reduce(combiner,
 map(term, range(1, n + 1)),
 start)

Create an iterable of fixed-length sequences

More Functions on Iterables (Bonus)

>>> a, b = (1, 2, 3), (4, 5, 6, 7)
>>> for x, y in zip(a, b):
... print(x + y)
...
5
7
9

The itertools module contains many useful functions for
working with iterables
>>> from itertools import product, combinations
>>> tuple(product(a, b[:2]))
((1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5))
>>> tuple(combinations(a, 2))
((1, 2), (1, 3), (2, 3))

Produces tuples with one element
from each argument, up to length

of smallest argument

	CS61A Lecture 15
	Announcements
	The Sequence Abstraction
	Recursive Lists
	Implementing Recursive Lists Using Pairs
	Implementing the Sequence Abstraction
	Python Sequence Abstraction
	Sequence Iteration
	For Statement Execution Procedure
	Sequence Unpacking in For Statements
	The Range Type
	String Literals
	Strings Are Sequences
	Sequence Arithmetic
	Sequences as Conventional Interfaces
	Iterables
	Generator Expressions
	Reducing a Sequence
	More Functions on Iterables (Bonus)

