CS61A Lecture 19

Amir Kamil
UC Berkeley
March 6, 2013

Announcements @

O HW6 due tomorrow

O Ants project out

Mutable Recursive Lists

def mutable_rlist():
contents = empty_rlist
def dispatch(message, value=None):
nonlocal contents

iT message == “len”:

return len_rlist(contents)
elif message == “getitem”:

return getitem_rlist(contents, value)
elif message == “push”:

contents = make_rlist(value, contents)
elif message == “pop~:

item = first(contents)
contents = rest(contents)
return item
elif message == "str":
return str_rlist(contents)
return dispatch

Building Dictionaries with Lists @

Now that we have lists, we can use them to build dictionaries
We store key-value pairs as 2-element lists inside another list

records = [["cain”, 2.79],
[“bumgarner®, 3.37],
[“vogelsong®, 3.37],
[“lincecum®, 5.18],
[Fzito", 4.15]]

Dictionary operations:

¢ getitem(key): Look at each record until we find a stored
key that matches key

¢ setitem(key, value): Checkifthere is a record with
the given key. If so, change the stored value to value. If not,
add a new record that stores key and value.

Implementing Dictionaries

af

def dictionary(Q:
""" Return a functional implementation of a dictionary.
records = []

def getitem(key):
for k, v in records:
it k == key:
return v

Question: Do we need a nonloca
statement here?

def setitem(key, value):
for item in records:
if item[0] == key:

ﬂ

item[1] = value
return
records.append([key, value])

def dispatch(message, key=None, value=None):
ifT message == “getitem”:
return getitem(key)
elif message == "setitem”:
setitem(key, value)

in records)
return tuple(v for _, v in records)

return dispatch

Dispatch Dictionaries @

Enumerating different messages in a conditional statement isn't
very convenient:

® Equality tests are repetitive
® We can't add new messages without writing new code

A dispatch dictionary has messages as keys and functions (or
data objects) as values.

Dictionaries handle the message look-up logic; we concentrate
on implementing useful behavior.

An Account as a Dispatch Dictionary @

The Story So Far About Data @

def account(balance):
""" Return an account that is represented as a
dispatch dictionary.""""

def withdraw(amount):
if amount > dispatch[“balance™]:
return "Insufficient funds”
dispatch[“balance™] -= amount
return dispatch[“balance”]

Question: Why
dispatch['balance’]
and not balance?
def deposit(amount):

dispatch[“balance®] += amount
return dispatch[“balance”]

dispatch = {"balance”: balance, “withdraw": withdraw,
“deposit”: deposit}

return dispatch

Data abstraction: Enforce a separation between how data
values are represented and how they are used.

Abstract data types: A representation of a data type is valid if it
satisfies certain behavior conditions.

Message passing: We can organize large programs by building
components that relate to each other by passing messages.

Dispatch functions/dictionaries: A single object can include
many different (but related) behaviors that all manipulate
the same local state.

(All of these techniques can be implemented
using only functions and assignment.)

Object-Oriented Programming @

Classes @

A method for organizing modular programs
® Abstraction barriers
® Message passing

* Bundling together information and related behavior

A metaphor for computation using distributed state
® Each object has its own local state.

® Each object also knows how to manage its own local state,
based on the messages it receives.

® Several objects may all be instances of a common type.

* Different types may relate to each other as well.

Specialized syntax & vocabulary to support this metaphor

A class serves as a template for its instances.

Idea: All bank accounts have a 55> a = Account('Jim")

balance and an account holder; the >»> a.holder
Account class should add those 'Jim’

attributes to each newly created >>> a.balance
instance. e

Idea: All bank accounts should have >>> a.deposit(15)
"withdraw" and "deposit" behaviors 15

. >>> a.withdraw(10
that all work in the same way. 5 (10)
>>> a.balance

5

>>> a.withdraw(10)
‘Insufficient funds'

Better idea: All bank accounts share
a "withdraw" method.

The Class Statement @

Initialization @

class <name>(P
A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

Statements in the <suite> create attributes of the class.

As soon as an instance is created, itis passedto ___ init__,
which is an attribute of the class.

class Account(object):
def __init__(self, account_holder):
self._balance = 0
self._holder = account_holder

Idea: All bank accounts have a balance and an account holder; the
Account class should add those attributes.
>>> a = Account('Jim")
>>> a.holder E
'Jim'
>>> a.balance
2]

When a class is called:

1. Anew instance of that class is created:

2. The constructor ___init__ of the class is called with the new
object as its first argument (called se 1), along with additional
arguments provided in the call expression.

class Account(ObJeCT)ccunssrsmmcscsananans
def _init_(selﬁ account_holder): H
self.balance = 0 L 3

self.holder = account_holder

Object Identity @

Methods

Gl

Every object that is an instance of a user-defined class has a
unique identity:

>>> a = Account('Jim")

>>> b = Account('Jack"')
Identity testing is performed by "is" and "is not" operators:

>>> ais a
True

>>> a is not b
True

Binding an object to a new name using assignment does not
create a new object:
>>> Cc =a

>>> ¢ is a
True

Methods are defined in the suite of a class statement

class Account(object):
def __init__(self, account_holder):
self._balance = 0
self._holder = account_holder

def deposit(self, amount):
self._balance = self.balance + amount
return self.balance

def withdraw(self, amount):
if amount > self._balance:
return "Insufficient funds*
self._balance = self._balance - amount
return self.balance

These def statements create function objects as always,
but their names are bound as attributes of the class.

Invoking Methods @

Dot Expressions

14

All invoked methods have access to the object via the sel ¥
parameter, and so they can all access and manipulate the
object's state.

class Account(object): [(alled with two arguments)

“balance + amount

return self_balance

Dot notation automatically supplies the first argument to
a method.

Llnvoked with one argument)

100

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class
<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name>
in the object that is the value of the <expression>

om_account.deposit(10)

Dot expression

K Call expression

Accessing Attributes @

Methods and Functions

Gl

Using getattr, we can look up an attribute using a string, just
as we did with a dispatch function/dictionary

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way
Looking up an attribute name in an object may return:
® One of its instance attributes, or

® One of the attributes of its class

Python distinguishes between:

® Functions, which we have been creating since the
beginning of the course, and

® Bound methods, which couple together a function and the
object on which that method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>

>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011

>>> tom_account.deposit(1000)

2011

Methods and Currying @

Earlier, we saw currying, which converts a function that takes in
multiple arguments into multiple chained functions.

The same procedure can be used to create a bound method
from a function
def curry(f):
def outer(x):
def inner(*args):
return f(x, *args)

return inner
>>> add2 = curry(add)(2) return outer
>>> add2(3)
5

>>> tom_deposit = curry(Account.deposit)(tom_account)
>>> tom_deposit(1000)
3011

