
CONTROL AND HIGHER ORDER FUNCTIONS 2
COMPUTER SCIENCE 61A

September 1, 2013

1 Warmup Question

1. Draw the environment diagram for this code

n = 7

def f(x):
return x + 3

def g(f, x):
return f(f(x) * 2)

m = g(f, n)

Solution:

1



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 2

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 3

2 Control

Control refers to directing the computer to selectively choose which lines of code get
executed

2.1 Conditional Statements

Conditional statements allow programs to execute different lines of code depending on
the current state. A typical if-else set of statements will have the following structure:

if <conditional expression>:
<suite of statements>

elif <conditional expression>:
<suite of statements>

else:
<suite of statements>

The else and elif statements are optional and you can have any number of elif statements.
Here a conditional clause is something that evaluates to either True or False. The body
of statements that get executed are the ones under the first true conditional clause. After
a true conditional clause is found, the rest are skipped. Note that in python everything
evaluates to True except False, 0, "", and None. There are other things that evaluate to
False but we haven’t learned them yet.

>>> if 2 + 3:
... print(6)
6

Here’s some example code

>>> def mystery(x):
... if x > 0:
... print(x)
... else:
... x(mystery)
...
>>> mystery(5)
5
>>> mystery(-1)
TypeError: ’int’ object is not callable

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 4
1. Write a simple function that takes in one input x, whose value is guaranteed to be

between 0 and 100. if x > 75 then print ”Q1”. If 50 ≤ x < 75 then print ”Q2”. If 25 ≤
xs < 50 then print ”Q3”. If x < 25 then print ”Q4”.

def find_quartile(x):

Solution:

if x > 75:
print("Q1")

if x > 50:
print("Q2")

if x > 25:
print("Q3")

else:
print("Q4")

2. Now try rewriting the function so that at most 4 lines of code inside the function will
ever get executed.

def find_quartile(x):

Solution:

if x > 50:
if x > 75:

print("Q1")
else:

print("Q2")
elif x > 25:

print("Q3")
else:

print("Q4")

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 5
2.2 Iteration

Using conditional statements we can ignore statements. On the other hand using iteration
we can repeat statements multiple times. A common iterative block of code is the while
statement. The structure is as follows:

while <conditional clause>:
<body of statements>

This block of code literally means while the conditional clause evaluates to True, execute
the body of statements over and over.

>>> def countdown(x):
... while x > 0:
... print(x)
... x = x - 1
... print("Blastoff!")
...
>>> countdown(3)
3
2
1
Blastoff!

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 6
1. Fill in the is prime function to return True if n is a prime and False otherwise. Hint:

use the % operator. x%y returns the remainder when x is divided by y.

def is_prime(n):

Solution:

k = 2
while k < n:

if n % k == 0:
return False

k += 1
return True

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 7

3 Functions

A function that manipulates other functions as data is called a higher order function (HOF).
For instance, a HOF can be a function that takes functions as arguments, returns a function
as its value, or both.

3.1 Functions as Argument Values

Suppose we would like to square or double every natural number from 1 to n and print
the result as we go. Using the functions square and double, each of which are functions
that take one argument that do as their name imply, fill out the following:

def square_every_number(n):

Solution:

i = 1
while i <= n:

print(square(i))
i += 1

def double_every_number(n):

Solution:

i = 1
while i <= n:

print(double(i))
i += 1

Note that the only thing different about square every number and double every number
is just what function we call on n when we print it. Wouldn’t it be nice to generalize
functions of this form into something more convenient? When we pass in the number,
couldn’t we specify, also, what we want to do to each number < n.

To do that, we can define a higher order function called every. every takes in the func-
tion you want to apply to each element as an argument, and applies it to n natural num-
bers starting from 1. So to write square every number, we can simply do:

def square_every_number(n):
every(square, n)

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 8
Equivalently, to write double every number, we can write:

def double_every_number(n):
every(double, n)

Note: These functions are not pure — as defined below, every will actually print values
to the screen.

3.2 Questions

1. Now implement the function every that takes in a function func and a number n,
and applies that function to the first n numbers from 1 and prints the result along the
way:

def every(func, n):

Solution:

i = 1
while i <= n:

print(func(i))
i += 1

2. Similarly, implement the function keep, which takes in a function condition cond
and a number n, and only prints a number from 1 to n to the screen if it fulfills the
condition:

def keep(cond, n):

Solution:

i = 1
while i <= n:

if cond(i):
print(i)

i += 1

3.3 Functions as Return Values

This problem comes up often: write a function that, given something, returns a function
that does something else. The key message — conveniently emphasized — is that your

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 9
function is supposed to return a function. For now, we can do so by defining an internal
function within our function definition and then returning the internal function.

def my_wicked_function(blah):
def my_wicked_helper(more_blah):

...
return my_wicked_helper

That is the common form for such problems but we will learn another way to do this
shortly.

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 10
3.4 Moar Questions

1. Write a function and add one that takes a function f as an argument (such that f is
a function of one argument). It should return a function that takes one argument, and
does the same thing as f, except adds one to the result.

def and_add_one(f):

Solution:

def foo(x):
return f(x) + 1

return foo

2. Write a function and add that takes a function f and a number n as arguments. It
should return a function that takes one argument, and does the same thing as the
function argument, except adds n to the result.

def and_add(f, n):

Solution:

def foo(x):
return f(x) + n

return foo

3. The following code has been loaded into the python interpreter:

def skipped(f):
def g():

return f
return g

def composed(f, g):
def h(x):

return f(g(x))
return h

def added(f, g):
def h(x):

return f(x) + g(x)
return h

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 11

def square(x):
return x*x

def two(x):
return 2

What will python output when the following lines are evaluated?

>>> composed(square, two)(7)

Solution:

4

>>> skipped(added(square, two))()(3)

Solution:

11

>>> composed(two, square)(2)

Solution:

2

4. Draw the environment diagram for this.

>>> from operator import add
>>> def curry2(h):
... def f(x):
... def g(y):
... return h(x,y)
... return g
... return f
>>> make_adder = curry2(add)
>>> add_three = make_adder(3)
>>> five = add_three(2)

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 12

Solution:

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan


