LIST AND DICTIONARIES

COMPUTER SCIENCE 61A

October 2, 2013

Lists

A list is an ordered collection of values. In Python, we can have lists of whatever values
we want, be it integers, strings, functions, or even other lists! Furthermore, the types of
the list’s contents need not be the same; in other words, the list need not be homogenous.
Lists are dynamic, so we can add, change, and remove elements whenever we like. Let’s
look at an example:

>>> fantasy_team = []

>>> fantasy_team.append ("frank gore")

>>> print (fantasy_team)

[frank gore’]

>>> fantasy_team.append("calvin johnson")
>>> print (fantasy_team[1])

calvin johnson

>>> fantasy_team.remove ("calvin johnson")
>>> fantasy_team[0] = "aaron rodgers"

>>> print (fantasy_team)

["aaron rodgers’]

Lists can be created using square braces, and likewise, their elements can be accessed via
square braces (we call this indexing). Lists are zero-indexed; to access their first element,
we must index at 0, to access their second element, we must index at 1, and to access their
i'" element, we must index at i — 1. Also handy, we can access the last element at index
-1. Let’s try out some indexing basics.

DISCUSSION 5: LIST AND DICTIONARIES Page 2
1.1 Basics

1. What would Python print?

>>>a = [1, 5, 4, 2, 3]
>>> print (a[0], al[-1])

Solution:

13

>>> al4] = al[2] + a[-2]
>>> a

Solution:

(1, 5, 4, 2, 6]

>>> len (a)

Solution: 5

>>> 4 in a

Solution: True

>>> a[l] = [a[l]l, al0]]
>>> a

Solution:

(1, (5, 11, 4, 2, 6]

1.2 List methods

In addition to the indexing operator, lists have many mutating methods, some of which
are listed here:

1. append (el) — Adds el to the end of the list

CS61A Fall 2013: John DeNero, with

Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan

DISCUSSION 5: LIST AND DICTIONARIES Page 3
2. index (el) — Returns the index of el if it occurs in the list, otherwise errors.

3. insert (i, el) — Insertel atindex i
4. remove (el) — Removes the first occurrence of el in list, otherwise errors
5. sort () — Sorts elements of list in place

List methods are called via ‘dot notation’, as in:

>>> colts = [’andrew luck’, ’'reggie wayne’]
>>> colts.append(’trent richardson’)

CS61A Fall 2013: John DeNero, with

Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan

DISCUSSION 5: LIST AND DICTIONARIES

Page 4
1. Write a function that removes all instances of an element from a list.

def remove_all(el, 1lst):
"""Removes all instances of el from 1lst.
>>> x = [3, 1, 2, 1, 5, 1, 1, 7]
>>> remove_all (1, x)
>>> x
[3, 2, 5, 7]

mmnn

Solution:

while el in 1st:
lst.remove (el)

2. Write a function that takes in two values = and y, and a list /, and adds as many y’s to
the end of the list as there are z’s. Do not use the built-in function count.

def add_this_many(x, vy, lst):
"mroAdds y to the end of 1st the number of times x occurs in 1st.
>>> 1st = [1, 2, 4, 2, 1]
>>> add _this_many (1, 5, 1st)
>>> 1st
(L, 2, 4, 2, 1, 5, 5]

mmnn

Solution:

count = 0
for el in 1Ist:
if el ==
count += 1
while count > O0:
1st.append(y)
count -=1

1.3 Slicing

If we’d like to get back parts of the list, as opposed to single elements, we slice the list. Slic-
ing a list returns us a copy subset of the original list. To slice, we use the following syntax:

CS61A Fall 2013: John DeNero, with

Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan

DISCUSSION 5: LIST AND DICTIONARIES Page 5
lst[start:end:step]

where start, end, and step are integers. The slice includes every other step elements start-
ing at the start index and up to but not including end index. In other words, it includes
elements at indices start, start+1*step, start+2*step, start+3*step, and so on up to end. It
is legal to omit one or more of start, end, and step; they default to 0, 1en (1st), and 1,
respectively. Start and end can be negative, meaning you count from the end.

>>> a = [0, 1, 2, 3, 4, 5, 6]
>>> a[l:4]
(1, 2, 3]
>>> a[l:6:2]
[1, 3, 5]
>>> al:4]
(0, 1, 2, 3]
>>> a[3:]
[3, 4, 5, 6]
>>> al[l:4:]
(1, 2, 3]
>>> al[-1:]

[6]

1. What would Python print?

>> a = [3, 1, 4, 2, 5, 3]
>>> af:4]

Solution: [3, 1, 4, 2]

>>> a

Solution: [3, 1, 4, 2, 5, 3]

>>> a[l::2]

Solution: [1, 2, 3]

>>> al:]

CS61A Fall 2013: John DeNero, with

Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan

DISCUSSION 5: LIST AND DICTIONARIES

Page 6

Solution: [3, 1, 4, 2,

3]

>>> al[4d:2]

Solution: []

>>> al[l:-2]

Solution: [1, 4, 2]

>>> gf[::-1]

Solution: [3, 5, 2, 4,

1.4 For loops

There are two common methods of looping through lists.

e for el in 1lst — loops through the elements in Ist

e for i in range (len(lst)) — loops through the valid, positive indices of Ist

If you do not need indices, looping over elements is usually more clear. Let’s try this out.

1. Reverse a list in place, meaning mutate the passed in list itself, instead of returning a

new list.

def reverse(lst):

"mrm Reverses lst in place.

>>> x = [3, 2, 4, 5,

>>> reverse (x)
>>> x
(1, 5, 4, 2, 3]

mmnn

1]

Solution:

i, n = 0, len(lst)
while 1 < n / 2:
temp = 1lst[i]

CS61A Fall 2013: John DeNero, with

Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan

DISCUSSION 5: LIST AND DICTIONARIES Page 7

1st[i] = 1lst[n - 1 - 1]
lst[n -1 - i] = temp
i +=1

2. Write a function that rotates the elements of a list to the right by k. Elements should
not “fall off”; they should wrap around the beginning of the list. rotate should
return a new list. To make a list of n 0’s, you can do this: [0] % n

def rotate(lst, k):
"mnm Return a new list, with the same elements

of 1st, rotated to the right k.

>>> x = [1, 2, 3, 4, 5]

>>> rotate(x, 3)

(3, 4, 5, 1, 2]

mmnn

Solution:

n = len(lst)

ret = [0] * n

for i in range (n)
j= (1 + k) %
ret[j] = 1st]

return ret

n
i]

or

return lst[-k:] + 1lst[:-k]

1.5 Higher order functions and list comprehensions

Many times, we wish an operation to be applied to all elements of a list. Python has

methods built-in to help us with these tasks (except reduce which has been hidden in
Python3):

e map (fn, 1lst) — applies fn to each element in Ist
e filter (pred, 1lst) — keeps those elements in Ist that satisfy the predicate

e reduce (accum, lst, zero_value) — repeatedly calls the accumulator, which
takes in two arguments and returns a single value, on elements of Ist.

CS61A Fall 2013: John DeNero, with
Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,

Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan

DISCUSSION 5: LIST AND DICTIONARIES Page 8
We can also use higher order functions in list comprehensions. List comprehensions are a
compact way to apply some operations to a sequence. They look like this:

[expression for value in sequence if predicate]

where the if clause is optional.
1. What would Python print?

>>> 11, 1 _2 = lambda x: 3*x + 1, lambda x: x % 2 == 0
>>> list (filter(l_2, map(1_1, [1,2,3,4]1)))

Solution:

(4, 10]

>>> [x+*x — x for x in [1, 2, 3, 4] if x > 2]

Solution:

[6, 12]

>>> [[yx2 for y in [x, x+1]] for x in [1,2,3,4]]

Solution:

(2, 41, (4, 6], [6, 8], [8, 10]]

Dictionaries

Recall that dictionaries are data structures that map keys to values. Dictionaries are usually
unordered (unlike real-world dictionaries) — in other words, the key-value pairs are not
arranged in the dictionary in any particular order. Let’s look at an example:

>>> superbowls = {’ joe montana’: 4, ’'tom brady’:3, ’'joe flacco’: 0}
>>> superbowls[’tom brady’]

3

>>> superbowls[’peyton manning’] = 1

>>> superbowls

{’peyton manning’: 1, ’"tom brady’: 3, ’joe flacco’: 0, ’Jjoe montana’:

CS61A Fall 2013: John DeNero, with

Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan

4}

DISCUSSION 5: LIST AND DICTIONARIES Page 9
>>> gsuperbowls [’ joe flacco’] =1
>>> superbowls

{’peyton manning’: 1, ’'tom brady’: 3, ’"joe flacco’: 1, ’Jjoe montana’:

Dictionaries are indexed with similar syntax as sequences, only they use keys, which can
be any immutable value, not just numbers. Dictionaries themselves are mutable; we can
add, remove, and change entries after creation. There is only one value per key, however,
in a dictionary (we call this injective or one-to-one).

1. Continuing from above, what would Python print?

>>> ’'colin kaepernick’ in superbowls

Solution: False

>>> len (superbowls)

Solution: 4
>>> superbowls[’peyton manning’] = superbowls[’ joe montana’]
>>> superbowls[(’eli manning’, ’'giants’)] = 2
>>> superbowls[3] = ’'cat’

>>> superbowls

Solution:

{’peyton manning’: 4, 3: 'cat’, ('eli manning’, ’'giants’): 2,
"tom brady’: 3, ’joe flacco’: 1, ’Jjoe montana’: 4}

>>> superbowls[(’eli manning’, ’‘giants)] = \

superbowls [’ joe montana’] + superbowls[’peyton manning’]
>>> superbowls[[’steelers’, "49ers’]] = 11
>>> superbowls

Solution: Error, unhashable type ‘list’

Dictionaries in general can be arbitrarily deep, meaning their values can be dictio-
naries themselves. Let’s get practice traversing these deep structures. To do so, we'll
need to know a couple more things about dictionaries.

To iterate over a dictionary’s keys:

CS61A Fall 2013: John DeNero, with

Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan

4}

DISCUSSION 5: LIST AND DICTIONARIES

Page 10

for k in d.keys () :

and to remove an entry:

del dictionarylkey]

2. Given an arbitrarily deep dictionary replace all occurrences of x as a value with y.

def replace_all(d, x, y):
"""Replaces all values of x with y.
>>> d = {1: {2:3, 3:4}, 2:{4:4, 5:3}}
>>> replace _all(d,3,1)
>>> d

{1: {(2: 1, 3: 4}, 2: {4: 4, 5: 1}}

mmnn

Solution:

for k in d.keys():
if d[k] ==
dfk] =y
elif type(d[k]) is dict:
replace_all(d[k], x, V)

3. Given a (non-nested) dictionary delete all occurences of a value. You cannot delete

items in a dictionary as you are iterating through it.

def rm(d, x):
"""Removes all pairs with value x.
>>> d = {1:2, 2:3, 3:2, 4:3}
>>> rm(d, 2)
>>> d
{2:3, 4:3}

mmnn

Solution:

rm_list = []
for k in d.keys():
if d[k] ==
rm_list.append (k)

CS61A Fall 2013: John DeNero, with

Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal

Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan

DISCUSSION 5: LIST AND DICTIONARIES Page 11

for k in rm list:
del d[k]

CS61A Fall 2013: John DeNero, with

Soumya Basu, Jeff Chang, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Richard Hwang,
Joy Jeng, Keegan Mann, Stephen Martinis, Bryan Mau, Mark Miyashita, Allen Nguyen, Julia Oh, Vaishaal
Shankar, Steven Tang, Sharad Vikram, Albert Wu, Chenyang Yuan

