
STREAMS AND REVIEW 12
COMPUTER SCIENCE 61A

April 23, 2014

1 Streams

A stream is our third example of a lazy sequence. A stream is like a lazily evaluated Rlist.
In other words, the stream’s elements (except for the first element) are only evaluated
when the values are needed.

Take a look at the following code:

class Stream:
class empty:

pass
empty = empty()

def __init__(self, first, compute_rest=lambda: Stream.empty):
self.first = first
self._compute_rest = compute_rest

@property
def rest(self):

if self._compute_rest is not None:
self._rest = self._compute_rest()
self._compute_rest = None

return self._rest

We represent Streams using Python objects, similar to the way we defined Rlists. We
nest streams inside one another, and compute one element of the sequence at a time.

Note that instead of specifying all of the elements in init , we provide a function,
compute rest, that encapsulates the code to calculate the remaining elements of the

1



DISCUSSION 12: STREAMS AND REVIEW Page 2
stream. Remember that the code in the function body is not evaluated until it is called,
which lets us implement the desired evaluation behavior.

This implementation of streams also uses memoization. The first time a program asks a
Stream for its rest field, the Stream code computes the required value using compute rest,
saves the resulting value, and then returns it. After that, every time the rest field is ref-
erenced, the stored value is simply returned.

Here is an example:

def make_integer_stream(first=1):
def compute_rest():

return make_integer_stream(first+1)
return Stream(first, compute_rest)

Notice what is happening here. We start out with a stream whose first element is 1, and
whose compute rest function creates another stream. So when we do compute the
rest, we get another stream whose first element is one greater than the previous element,
and whose compute rest creates another stream. Hence, we effectively get an infinite
stream of integers, computed one at a time. This is almost like an infinite recursion, but
one which can be viewed one step at a time, and so does not crash.

1.1 Questions

1. Write a procedure make fib stream() that creates an infinite stream of Fibonacci
Numbers. Make the first two elements of the stream 0 and 1. Hint: Consider using
a helper function that can take two arguments, then think about how to start calling
that function. Alternatively, you can implement it using the add streams() function
that was introduced in lecture.

def make_fib_stream():

Solution:

def make_fib_stream():
return fib_stream_generator(0, 1)

def fib_stream_generator(a, b):
def compute_rest():

return fib_stream_generator(b, a+b)
return Stream(a, compute_rest)

CS61A Spring 2014: Paul Hilfinger, with
Soumya Basu, Rohan Chitnis, Andrew Huang, Robert Huang, Michelle Hwang, Joy Jeng, Keegan Mann,
Mark Miyashita, Allen Nguyen, Julia Oh, Steven Tang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 12: STREAMS AND REVIEW Page 3

def add_inf_streams(s1, s2):
return Stream(s1.first + s2.first,

lambda: add_inf_streams(s1.rest, s2.rest))

def fib_stream(): # alternative
def compute_rest():

return add_inf_streams(fib_stream(),
make_fib_stream().rest)

return Stream(0, lambda: Stream(1, compute_rest))

2. Suppose one wants to define a random infinite stream of numbers via the recursive
definition: “a random infinite stream consists of a first random number, followed by
a remaining random infinite stream.” Consider an attempt to implement this via the
code. Are there any problems with this? How can we fix this?

from random import random
random_stream = Stream(random(), lambda: random_stream)

Solution: The provided code will generate a single random number, and then
produce an infinite stream which simply repeats that one number over and over.
To fix this, we can make this into a function that returns a Stream:

def random_stream():
return Stream(random(), random_stream)

1.2 Higher Order Functions on Streams

Naturally, as the theme has always been in this class, we can abstract our stream proce-
dures to be higher order. Take a look at filter stream:

def filter_stream(filter_func, s):
def make_filtered_rest():

return filter_stream(filter_func, s.rest)

if s is Stream.empty:
return s

elif filter_func(s.first):
return Stream(s.first, make_filtered_rest)

else:
return filter_stream(filter_func, s.rest)

CS61A Spring 2014: Paul Hilfinger, with
Soumya Basu, Rohan Chitnis, Andrew Huang, Robert Huang, Michelle Hwang, Joy Jeng, Keegan Mann,
Mark Miyashita, Allen Nguyen, Julia Oh, Steven Tang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 12: STREAMS AND REVIEW Page 4
You can see how this function might be useful. Notice how the Stream we create has as its
compute rest function a procedure that “promises” to filter out the rest of the Stream
when asked. So at any one point, the entire stream has not been filtered. Instead, only the
part of the stream that has been referenced has been filtered, but the rest will be filtered
when asked. We can model other higher order Stream procedures after this one, and we
can combine our higher order Stream procedures to do incredible things!

1.3 Questions

1. What does the following Stream output? Try writing out the first few values of the
stream to see the pattern.

def my_stream():
def compute_rest():

return add_streams(map_stream(double, my_stream()),
my_stream())

return Stream(1, compute_rest)

Solution: Powers of 3: 1, 3, 9, 27, 81, ...

2. (Summer 2012 Final) What are the first five values in the following stream?

def my_stream():
def compute_rest():

return add_streams(stream_filter(lambda x: x%2 == 0,
my_stream()), stream_map(lambda x: x+2, my_stream()))

return Stream(2, compute_rest)

Solution: 2, 6, 14, 30, 62

3. In a similar model to filter stream, let’s recreate the procedure map stream from
lecture, that given a stream stream and a one-argument function func, returns a
new stream that is the result of applying func on every element in s.

def stream_map(func, s):

Solution:

def compute_rest():
return stream_map(func, s.rest)

if s is Stream.empty:

CS61A Spring 2014: Paul Hilfinger, with
Soumya Basu, Rohan Chitnis, Andrew Huang, Robert Huang, Michelle Hwang, Joy Jeng, Keegan Mann,
Mark Miyashita, Allen Nguyen, Julia Oh, Steven Tang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 12: STREAMS AND REVIEW Page 5

return s
else:

return Stream(func(s.first), compute_rest)

2 Review

It’s never to early to start reviewing for the final. Hurray!

1. (Fall 2011 Final) Implement a generator function, unique, that takes an iterable argu-
ment and returns an iterator over all the unique elements of its input in the order in
which they first appear. Do not use any def, for, or class statements, or lambda
expressions.

def unique(iterable):
"""
>>> list(unique([1, 3, 2, 2, 5, 3, 4, 1]))
[1, 3, 2, 5, 4]
"""

Solution:

observed = set()
i = iter(iterable)
while True:

el = next(i)
if el not in observed:

observed.add(el)
yield el

2. (Fall 2012 Final) Implement a reversed relationship in logic. You may assume that
an append-to-form relationship exists.

logic> (fact (append-to-form () ?x ?x))
logic> (fact (append-to-form (?a . ?r) ?y (?a . ?z))

(append-to-form ?r ?y ?z))

Solution:

(fact (reversed () ()))

CS61A Spring 2014: Paul Hilfinger, with
Soumya Basu, Rohan Chitnis, Andrew Huang, Robert Huang, Michelle Hwang, Joy Jeng, Keegan Mann,
Mark Miyashita, Allen Nguyen, Julia Oh, Steven Tang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 12: STREAMS AND REVIEW Page 6

(fact (reversed (?a . ?r) ?s)
(reversed ?r ?rev)
(append-to-form ?rev (?a) ?s))

3. (Spring 2013 Final) Write a relation sorted that is true if the given list is sorted in
increasing order. Assume that you have a <= relation that relates two items if the first
is less than or equal to the second.

logic> (fact (<= a a))
logic> (fact (<= a b))
logic> (fact (<= b b))
logic> (query (sorted ()))
Success!
logic> (query (sorted (a b b)))
Success!
logic> (query (sorted (b a)))
Failed.

Solution:

(fact (sorted ()))
(fact (sorted (?a)))
(fact (sorted (?a ?b . ?r))

(<= ?a ?b)
(sorted (?b . ?r)))

4. (Spring 2012 Final) A classic puzzle called the Towers of Hanoi is a game that consists
of three rods, and a number of disks of different sizes which can slide onto any rod.
The puzzle starts with the disks in a neat stack in ascending order of size on one rod,
the smallest at the top, thus making a conical shape.

The objective of the puzzle is to move the entire stack to another rod, obeying the
following rules:

• Only one disk may be moved at a time.

• Each move consists of taking the upper disk from one of the rods and sliding it
onto another rod, on top of the other disks that may already be present on that
rod.

• No disk may be placed on top of a smaller disk.

CS61A Spring 2014: Paul Hilfinger, with
Soumya Basu, Rohan Chitnis, Andrew Huang, Robert Huang, Michelle Hwang, Joy Jeng, Keegan Mann,
Mark Miyashita, Allen Nguyen, Julia Oh, Steven Tang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 12: STREAMS AND REVIEW Page 7
Complete the definition of towers of hanoi which prints out the steps to solve this
puzzle for any number of n disks starting from the start rod and moving them to
the end rod:

def move_disk(start, end):
print("Move 1 disk from rod", start, "to rod", end)

def towers_of_hanoi(n, start, end):
"""Print the moves required to solve the towers of hanoi
game if we start with n disks on the start pole and want
to move them all to the end pole.
The game is to assumed to have 3 poles.

>>> towers_of_hanoi(1, 1, 3)
Move 1 disk from rod 1 to rod 3
>>> towers_of_hanoi(2, 1, 3)
Move 1 disk from rod 1 to rod 2
Move 1 disk from rod 1 to rod 3
Move 1 disk from rod 2 to rod 3
"""

Solution:

if n > 0:
tmp = 6 - start - end
towers_of_hanoi(n-1, start, tmp)
move_disk(start, end)
towers_of_hanoi(n-1, tmp, end)

CS61A Spring 2014: Paul Hilfinger, with
Soumya Basu, Rohan Chitnis, Andrew Huang, Robert Huang, Michelle Hwang, Joy Jeng, Keegan Mann,
Mark Miyashita, Allen Nguyen, Julia Oh, Steven Tang, Albert Wu, Chenyang Yuan, Marvin Zhang


