Lecture #3: Environments Names

e Substitution is not as simple as it might seem. e Evaluating expressions that are literals is easy: the literal's text

« For example: gives all the information needed.

o But how did I evaluate names like add, mul, or print?

def f(x):
def g(x): e How do I explain assignment? Substitution inadequate.
return x + 10 x =3
return g(5) print (x)
£(3) <=4
o When we call f(3), we should not substitute 3 for the xs in g! print (x) # After x = 3, does this x change to 377!

e And there are other difficulties. .. e Deduction: there must be another source of information.

o We'll use the concept of an environment to explain it.

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 1 Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 2

Environments Evaluation of Names

e An environment is a mapping from names to values. e To evaluate a name (identifier) in an environment, look for what that

e We say that a name is bound to a value in this environment. name "is bound to” in that environment.

o Every expression is evaluated in an environment, which supplies the * For example, in this situation...

® square(radius)

meanings of any names in it.)
e Simplest environment consists of a single global environment frame: mul: . »Axy <o xy >
D print: ——» |\ x: < print x>
Imported ——»mul: S AX Yy LT XYy > radius: 10
Pre-defined —u»b'r.in‘r: —— |\ x: < print x > édhare' _ '\ x: return mul(x, x)|
Assigned — radius: 10
Assigned e B (i ret itx, %) Expression’s Value Expression
by def ~ "square: ¥ |A X: refurn mul(x, Evaluation Environment
for Expression ;] /

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 3 Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 4
Evaluation of Names (II) Evaluation of Names: More Complicated Environments
... We find the values for square and radius in the global frame (the big ¢ In general, as we'll see, environments consist of chains of frames.
box with the globe on its upper right). e Here, we find the value of x in the small, “local frame"
) D —_— e We don't find mul, there, so we must follow the “environment link"
mul: T rAxy <axy> looking for it.
print: ———» Al x: < print x> —®
mul: XYL T XY >
radius: 10 .
prints ————» [\ < print x >
square: —— |\ x: return mul(x, x)\
Environment radius: 10
link e
square: —— [\ x: refurn mul(x, x)|

A local frame

4% [A x: mul(x, x)| (10)) } " 4 o

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 5 Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 6

More Complicated Environments (IT)

mil s [AX,y <7 Xy >
print: —— [\ x: < print x >
Environment radius: 10
link . |square: —4——[\x: return mul(x,)|
A local frame ‘
kY

R

%10 Ty <] @0, o))

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 7

Evaluating User-Defined Function Calls

e Consider the expression square(mul(x, x)) in

from operator import mul
def square(x):
return mul (x, x)
x = -2
print (square (mul(x, 5)))

—®
mul: — AX, LT XY >
print: —4—— [\l xi < print x >

X: -2

.. Expression
square: —— |\ x: mul(x, x) Evaluation
0
Evaluation -~ ® square(mul(x, 5))
Environment
Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 8

Evaluating User-Defined Function Calls (IT)

o First evaluate the subexpressions of square(mul(x, x)) in the global
environment:

D

mul: X,y < XYy >
print: 4 ———— [\ x: < print x >
X -2

édhar‘e: -\ x: mul(x, x)

n
T—é Aximul(x, %) (Ax,y: <o xy > (-2],[5)

o Evaluating subexpressions x, mul, and square takes values from the
expression's environment.

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 9

Evaluating User-Defined Functions Calls (IIT)

e Then call the multiply function. Since this is primitive, let's just use
the substitution model:

—®
mul: > AX, Yy Lo xy>

-p‘r.int: > Al x: < print x >

X: -2

square: » |\ x: mul(x, x)

[]
4% A x: mul(x, x)| (< —2x5>) }

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 10

Evaluating User-Defined Functions Calls (IV)

e Execute the primitive operation:

i - S cET
b.r.in’r: > |\l x: < print x >
x: -2

édﬁare: » |\ x: mul(x, x)

M1
4%) (-10) }

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 11

Evaluating User-Defined Functions Calls (V)

e To evaluate the call to the user-defined function (square), start a
new evaluation in a new local environment frame, attached to the
frame where square was defined (the global frame here), and giving
x the operand value.

mul: > AX, Yy Lz XYy>
print: » [\ x: < print x >|
x: -2

édhare: » |\ x: mul(x, x)

S W(XDXW (10) |

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 12

Evaluating User-Defined Functions Calls (VI)

o When we evaluate mul(x, x) in this new environment, we get the same
value as before for mul, but the local value for x.

mit - .
-p‘r.in'r: > Al x: < print x >
x| -2

éﬁhare: » |\ x: mul(x, x)

|]
<—-§> Ax,y: < xy > (-10],[-10)]

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 13

Evaluating User-Defined Functions Calls (VIT)

e Evaluate the primitive multiplication as before:

—0

X: -2

mul: > AX, Yy Lz Xy>

b'r.in‘r: > Al x: < print x >

square: » |\ x: mul(x, x)

-

e \ (1) |

LI
4—% < —10 x =10 > }

Last modified: Mon Mar 3 01:54:56 2014

CS61A: Lecture #3 14

Evaluating User-Defined Functions Calls (VIIT)

e And return the finished value. ..

i — S ET
b.r"inT: > |\l x: < print x >
x: -2

édﬁare: » |\ x: mul(x, x)

[]

¢ PxmiGx (o) |

x: -10 - @
® 100

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 15

Evaluating User-Defined Functions Calls (IX)

o ...replacing the call to the user-defined function and yielding the

final value:

—0

mul: > AX, Yy Lo Xy>

.p-r‘in‘r: > Al x: < print x >

A
®
g8

Last modified: Mon Mar 3 01:54:56 2014

X: -2
édﬁar‘e: » [\ x: mul(x, x)
fog
4% 100 }
x: -10 100

CS61A: Lecture #3 16

Summary: Environments

e Environments map names to values.
o They consist of chains of environment frames.

e An environment is either a global frame or a first (local) frame
chained to a parent environment (which is itself either a global frame
or...).

o We say that a name is bound to a value in a frame.

o The value (or meaning) of a name in an environment is the value it is
bound to in the first frame, if there is one, ...

e ...or if not, the meaning of the name in the parent environment

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 17

A Sample Environment Chain

Environ. 2 - :

Global ————»

Environ. 1 -t

Last modified: Mon Mar 3 01:54:56 2014

Value of
In X |y
Global 1 |12
Environ1.| 2 |12
Environ2.| 3 |12

| " Environ. I's parent

i-- Environ. 1's first frame

- Environ. 2's parent

i Environ. 2's first frame

CS61A: Lecture #3 18

Environments: Binding and Evaluation

o Every expression and statement is evaluated (executed) in an envi-
ronment, which determines the meaning of its names.

o Subexpressions (pieces) of an expression are evaluated in the same
environment as the expression

e Assigning to a variable binds a value to it in (for now) the first frame
of the environment in which the assignment is executed.

e Def statements bind a hame to a function value in the first frame
of the environment in which the def statement is executed.

e Calling a user-defined function creates a new local environment and
binds the operand values in the call o the parameter names in that
environment.

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 19

Example: Evaluation of a Call: sum_square(3,4)

square: > |\ X: return x*x

mul, abs. ..

.s'u.m,squar‘e: —— |\ X, y: return square(x)+square(y)

4% sum squar'e(3 4) J
J

A 4—@ squar'e(x)+square(y)

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 20

	Lecture #3: Environments
	Names
	Environments
	Evaluation of Names
	Evaluation of Names (II)
	Evaluation of Names: More Complicated Environments
	More Complicated Environments (II)
	Evaluating User-Defined Function Calls
	Evaluating User-Defined Function Calls (II)
	Evaluating User-Defined Functions Calls (III)
	Evaluating User-Defined Functions Calls (IV)
	Evaluating User-Defined Functions Calls (V)
	Evaluating User-Defined Functions Calls (VI)
	Evaluating User-Defined Functions Calls (VII)
	Evaluating User-Defined Functions Calls (VIII)
	Evaluating User-Defined Functions Calls (IX)
	Summary: Environments
	A Sample Environment Chain
	Environments: Binding and Evaluation
	Example: Evaluation of a Call: sum_square(3,4)

