
Lecture #3: Environments

• Substitution is not as simple as it might seem.

• For example:

def f(x):

def g(x):

return x + 10

return g(5)

f(3)

• When we call f(3), we should not substitute 3 for the xs in g!

• And there are other difficulties. . .

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 1

Names

• Evaluating expressions that are literals is easy: the literal’s text
gives all the information needed.

• But how did I evaluate names like add, mul, or print?

• How do I explain assignment? Substitution inadequate.

x = 3

print(x)

x = 4

print(x) # After x = 3, does this x change to 3??!

• Deduction: there must be another source of information.

• We’ll use the concept of an environment to explain it.

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 2

Environments

• An environment is a mapping from names to values.

• We say that a name is bound to a value in this environment.

• Every expression is evaluated in an environment, which supplies the
meanings of any names in it.

• Simplest environment consists of a single global environment frame:

mul:
. . .
print:
. . .
radius: 10
. . .
square:

λ x, y: ≪ x × y ≫

λ x: return mul(x, x)

λ! x: ≪ print x ≫Pre-defined

Imported

Assigned

Assigned
by def

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 3

Evaluation of Names

• To evaluate a name (identifier) in an environment, look for what that
name “is bound to” in that environment.

• For example, in this situation. . .

mul:
. . .
print:
. . .
radius: 10
. . .
square:

λ x, y: ≪ x × y ≫

λ x: return mul(x, x)

λ! x: ≪ print x ≫

square(radius)

ExpressionExpression’s Value
Evaluation Environment

for Expression

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 4

Evaluation of Names (II)

. . .We find the values for square and radius in the global frame (the big
box with the globe on its upper right).

mul:
. . .
print:
. . .
radius: 10
. . .
square:

λ x, y: ≪ x × y ≫

λ x: return mul(x, x)

λ! x: ≪ print x ≫

λ x: mul(x, x) (10)

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 5

Evaluation of Names: More Complicated Environments

• In general, as we’ll see, environments consist of chains of frames.

• Here, we find the value of x in the small, “local frame”

• We don’t find mul, there, so we must follow the “environment link”
looking for it.

mul:
. . .
print:
. . .
radius: 10
. . .
square:

x: 10

λ x, y: ≪ x × y ≫

λ x: return mul(x, x)

λ! x: ≪ print x ≫

mul(x, x)

A local frame

Environment
link

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 6

More Complicated Environments (II)

mul:
. . .
print:
. . .
radius: 10
. . .
square:

x: 10

λ x, y: ≪ x × y ≫

λ x: return mul(x, x)

λ! x: ≪ print x ≫

λ x, y: ≪ x × y ≫ (10 , 10))

A local frame

Environment
link

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 7

Evaluating User-Defined Function Calls

• Consider the expression square(mul(x, x)) in

from operator import mul

def square(x):

return mul(x, x)

x = -2

print(square(mul(x, 5)))

mul:
. . .
print:
. . .
x: -2
. . .
square:

λ x, y: ≪ x × y ≫

λ x: mul(x, x)

λ! x: ≪ print x ≫

square(mul(x, 5))Evaluation
Environment

Expression
Evaluation

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 8

Evaluating User-Defined Function Calls (II)

• First evaluate the subexpressions of square(mul(x, x)) in the global
environment:

mul:
. . .
print:
. . .
x: -2
. . .
square:

λ x, y: ≪ x × y ≫

λ x: mul(x, x)

λ! x: ≪ print x ≫

λ x: mul(x, x) (λ x, y: ≪ x × y ≫ (-2 , 5))

• Evaluating subexpressions x, mul, and square takes values from the
expression’s environment.

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 9

Evaluating User-Defined Functions Calls (III)

• Then call the multiply function. Since this is primitive, let’s just use
the substitution model:

mul:
. . .
print:
. . .
x: -2
. . .
square:

λ x, y: ≪ x × y ≫

λ x: mul(x, x)

λ! x: ≪ print x ≫

λ x: mul(x, x) (≪ −2 × 5 ≫)

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 10

Evaluating User-Defined Functions Calls (IV)

• Execute the primitive operation:

mul:
. . .
print:
. . .
x: -2
. . .
square:

λ x, y: ≪ x × y ≫

λ x: mul(x, x)

λ! x: ≪ print x ≫

λ x: mul(x, x) (-10)

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 11

Evaluating User-Defined Functions Calls (V)

• To evaluate the call to the user-defined function (square), start a
new evaluation in a new local environment frame, attached to the
frame where square was defined (the global frame here), and giving
x the operand value.

mul:
. . .
print:
. . .
x: -2
. . .
square:

x: -10

λ x, y: ≪ x × y ≫

λ x: mul(x, x)

λ! x: ≪ print x ≫

λ x: mul(x, x) (-10)

mul(x, x)

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 12

Evaluating User-Defined Functions Calls (VI)

• When we evaluate mul(x, x) in this new environment, we get the same
value as before for mul, but the local value for x.

mul:
. . .
print:
. . .
x: -2
. . .
square:

x: -10

λ x, y: ≪ x × y ≫

λ x: mul(x, x)

λ! x: ≪ print x ≫

λ x: mul(x, x) (-10)

λ x, y: ≪ x × y ≫ (-10 , -10)

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 13

Evaluating User-Defined Functions Calls (VII)

• Evaluate the primitive multiplication as before:

mul:
. . .
print:
. . .
x: -2
. . .
square:

x: -10

λ x, y: ≪ x × y ≫

λ x: mul(x, x)

λ! x: ≪ print x ≫

λ x: mul(x, x) (-10)

≪ −10 ×−10 ≫

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 14

Evaluating User-Defined Functions Calls (VIII)

• And return the finished value. . .

mul:
. . .
print:
. . .
x: -2
. . .
square:

x: -10

λ x, y: ≪ x × y ≫

λ x: mul(x, x)

λ! x: ≪ print x ≫

λ x: mul(x, x) (-10)

100

100

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 15

Evaluating User-Defined Functions Calls (IX)

• . . . replacing the call to the user-defined function and yielding the
final value:

mul:
. . .
print:
. . .
x: -2
. . .
square:

x: -10

λ x, y: ≪ x × y ≫

λ x: mul(x, x)

λ! x: ≪ print x ≫

100

100

100

100

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 16

Summary: Environments

• Environments map names to values.

• They consist of chains of environment frames.

• An environment is either a global frame or a first (local) frame
chained to a parent environment (which is itself either a global frame
or . . .).

• We say that a name is bound to a value in a frame.

• The value (or meaning) of a name in an environment is the value it is
bound to in the first frame, if there is one, . . .

• . . . or if not, the meaning of the name in the parent environment

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 17

A Sample Environment Chain

mul:
x: 1
y: 12

x: 2

x: 3

Environ. 1

Environ. 2

Global

Environ. 1’s first frame

Environ. 1’s parent

Environ. 2’s first frame

Environ. 2’s parent

Value of
In x y
Global 1 12
Environ 1. 2 12
Environ 2. 3 12

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 18

Environments: Binding and Evaluation

• Every expression and statement is evaluated (executed) in an envi-
ronment, which determines the meaning of its names.

• Subexpressions (pieces) of an expression are evaluated in the same
environment as the expression

• Assigning to a variable binds a value to it in (for now) the first frame
of the environment in which the assignment is executed.

• Def statements bind a name to a function value in the first frame
of the environment in which the def statement is executed.

• Calling a user-defined function creates a new local environment and
binds the operand values in the call to the parameter names in that
environment.

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 19

Example: Evaluation of a Call: sum square(3,4)

square:
. . .
mul, abs. . .
. . .
sum square:

λ x: return x*x

λ x, y: return square(x)+square(y)

sum square(3,4)
25

square(x)+square(y)

square(3)
9

x*x

square(4)
16

x*x

A
x: 3
y: 4 A

A Ax: 3
B
x: 4

B

Last modified: Mon Mar 3 01:54:56 2014 CS61A: Lecture #3 20

	Lecture #3: Environments
	Names
	Environments
	Evaluation of Names
	Evaluation of Names (II)
	Evaluation of Names: More Complicated Environments
	More Complicated Environments (II)
	Evaluating User-Defined Function Calls
	Evaluating User-Defined Function Calls (II)
	Evaluating User-Defined Functions Calls (III)
	Evaluating User-Defined Functions Calls (IV)
	Evaluating User-Defined Functions Calls (V)
	Evaluating User-Defined Functions Calls (VI)
	Evaluating User-Defined Functions Calls (VII)
	Evaluating User-Defined Functions Calls (VIII)
	Evaluating User-Defined Functions Calls (IX)
	Summary: Environments
	A Sample Environment Chain
	Environments: Binding and Evaluation
	Example: Evaluation of a Call: sum_square(3,4)

