Lecture #6: Higher-Order Functions at Work

Announcents:

o Free drop-in tutoring from HKN, the EECS honor society. Week-
days 1lam-5pm 345 Soda or 290 Cory. For more information see
hkn.eecs.berkeley.edu.

® A message from the AWE:

"The Association of Women in EECS is hosting a 61A party
this Sunday (2/9) from 1-3PM in the Woz! Come hang out,
befriend other girls in 61A and meet AWE members who have
taken it before! There will be lots of food, games, and fun!”

o Hog project released last Friday. Don't miss it!

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 1

Iterative Update

e A general strategy for solving an equation:

Guess a solution

whileyour guess isn't good enough|:

\update your guess

e The three boxed segments are parameters to the process.

e The last fwo segments clearly require functions for their representation—
a predicate function (returning true/false values), and a function
from values to values.

e In code,

def iter_solve(guess, done, update):
"""Return the result of repeatedly applying UPDATE,
starting at GUESS, until DONE yields a true value
when applied to the result. UPDATE takes a guees
and returns an updated guess."""
What goes here?

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 2

Recursive Version (I)

def iter_solve(guess, done, update):
"""Return the result of repeatedly applying UPDATE,
starting at GUESS, until DONE yields a true value
when applied to the result. UPDATE takes a guees
and returns an updated guess."""

if done(guess)
return guess

else:
return iter_solve(update(guess), done, update)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 3

Recursive Version (IT)

def iter_solve(guess, done, update):
"""Return the result of repeatedly applying UPDATE,
starting at GUESS, until DONE yields a true value
when applied to the result. UPDATE takes a guees
and returns an updated guess."""
def solution(guess):
if done(guess):
return guess
else:
return solution(update(guess))
return solution(guess)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 4

Iterative Version

def iter_solve(guess, done, update):
"""Return the result of repeatedly applying UPDATE,
starting at GUESS, until DONE yields a true value
when applied to the result. UPDATE takes a guees
and returns an updated guess."""
while not done(guess):
guess = update(guess)
return guess

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 5

Adding a Safety Net

e In real life, we might want to make sure that the function doesn't
just loop forever, getting no closer to a solution.

def iter_solve(guess, done, update, iteration_limit=32):
"""Return the result of repeatedly applying UPDATE,
starting at GUESS, until DONE yields a true value
when applied to the result. Causes error if more than
ITERATION_LIMIT applications of UPDATE are necessary."""

def solution(guess, iteration_limit):
if done(guess):
return guess
elif iteration_limit <= O:
raise ValueError("failed to converge")
else:
return solution(update(guess), iteration_limit-1)
return solution(guess, iteration_limit)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 6

hkn.eecs.berkeley.edu

Iterative Version with Safety Net.

def iter_solve(guess, done, update, iteration_limit=32):
"""Return the result of repeatedly applying UPDATE,
starting at GUESS, until DONE yields a true value
when applied to the result. Causes error if more than
ITERATION_LIMIT applications of UPDATE are necessary."""

while not done(guess):
if iteration_limit <= 0:
raise ValueError("failed to converge")
guess, iteration_limit = update(guess), iteration_limit-1
return guess

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 7

Using Iterative Solving For Newton's Method

e Newton's method (aka the Newton-Raphson method) is a general
numerical technique for finding approximate solutions to f(z) = 0,
given the function f, its derivative f’, and an initial guess, x,. It pro-
duces a result o some desired tolerance (that is, to some definition
of “close enough”).

e Seehttp://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif
e Given a guess, x;;, compute the next guess, x4 by

flzx)

e = f'(xr)

def newton_solve(func, deriv, start, tolerance):
"""Return x such that |FUNC(x)| < TOLERANCE, given initial
estimate START, assuming DERIV is the derivatative of FUNC."""
def close_enough(x):
return abs(func(x)) < tolerance
def newton_update(x):
return x - func(x) / deriv(x)

return iter_solve(start, close_enough, newton_update)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 8

Using newton solve for /- and /-

def square_root(a):
if a < 0:
raise ValueError("square root of negative value")
return newton_solve(lambda x: x*x - a, lambda x: 2 * X,
a/2, a * 1le-10)

def cube_root(a):
return newton_solve(lambda x: x**3 - a, lambda x: 3 * x **x 2,
a/3, a * 1e-10)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 9

Dispensing With Derivatives

e What if we just want to work with a function, without knowing its
derivative?

® Book uses an approximation:

def find_root(func, start=1, tolerance=1e-5):
def approx_deriv(f, delta = 1le-5):
return lambda x: (func(x + delta) - func(x)) / delta
return newton_solve(func, approx_deriv(func), start, tolerance)

e This is nice enough, but looks a little ad hoc (how did T pick delta?).

e Another alternative is the secant method.

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 10

The Secant Method

e Newton's method was

flx)

T4l = T — f/(’l)

o The secant method uses that last two values to get (in effect) a
replacement for the derivative:

Tt = @ — flag) ok =Tkl
T () = faea)
e See http://en.wikipedia.org/wiki/File:Secant_method.svg

o But this is a problem for us: so far, we've only fed the update func-
tion the value of z;. each time. Here we also need z;._;.

o How do we generalize to allow arbitrary extra data (hot just z;_;)?

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 11

Generalized iter_solve

def iter_solve2(guess, done, update, state=None):

"""Return the result of repeatedly applying UPDATE to GUESS
and STATE, until DONE yields a true value when applied to
GUESS and STATE. UPDATE returns an updated guess and state."""
while not done(guess, state):

guess, state = update(guess, state)
return guess

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 12

http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif
http://en.wikipedia.org/wiki/File:Secant_method.svg

Using Generalized iter_solve2 for the Secant Method Secant Method Applied to Square Root

The secant method: def square_root2(x):
Tp— Th_1 """An approximation to the square root of X,
Ik+1::xh__f(x”}T;;yjf?YEZjD' using the secant method.
def secant_solve(func, startO, startl, tolerance): >>> round(square_root2(9), 10)
"""An approximate solution to FUNC(x) == 0 for which 3.0
|FUNC(x) | <TOLERANCE, as computed by the secant method e
beginning at points STARTO and START1.""" if x < O:
raise ValueError("square root of negative value")
def close_enough(x, state): return secant_solve(lambda y: y*y - x,
return abs(func(x)) < tolerance 1, 0.5 % (x + 1),
def secant_update(xk, xk1): x * 1.0e-10)

return (xk - func(xk) * (xk - xk1)
/ (func(xk) - func(xkl)),
xk)
return iter_solve2(startl, close_enough, secant_update, startO)

Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 13 Last modified: Mon Mar 3 01:54:52 2014 CS61A: Lecture #6 14

	Lecture #6: Higher-Order Functions at Work
	Iterative Update
	Recursive Version (I)
	Recursive Version (II)
	Iterative Version
	Adding a Safety Net
	Iterative Version with Safety Net.
	Using Iterative Solving For Newton's Method
	Using newton_solve for and [3]
	Dispensing With Derivatives
	The Secant Method
	Generalized iter_solve
	Using Generalized iter_solve2 for the Secant Method
	Secant Method Applied to Square Root

