
Lecture #13: More Sequences and Strings

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 1

Odds and Ends: Multi-Argument Map

• Python’s built-in map function actually applies a function to one or
more sequences:

>>> from operator import *

>>> tuple(map(abs, (-1, 2, -4, 5))

(1, 2, 4, 5)

>>> tuple(map(add, (1, 2, 3, 18), (5, 2, 1)))

(6, 4, 4)

• That is, map takes a function of N arguments plus N sequences and
applies the function to the corresponding items of the sequences
(throws away extras, like 18).

• So, how do we do this:

def deltas(L):

"""Given that L is a sequence of N items, return

the (N-1)-item sequence (L[1]-L[0], L[2]-L[1],...)."""

return

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 2

Odds and Ends: Multi-Argument Map

• Python’s built-in map function actually applies a function to one or
more sequences:

>>> from operator import *

>>> tuple(map(abs, (-1, 2, -4, 5))

(1, 2, 4, 5)

>>> tuple(map(add, (1, 2, 3, 18), (5, 2, 1)))

(6, 4, 4)

• That is, map takes a function of N arguments plus N sequences and
applies the function to the corresponding items of the sequences
(throws away extras, like 18).

• So, how do we do this:

def deltas(L):

"""Given that L is a sequence of N items, return

the (N-1)-item sequence (L[1]-L[0], L[2]-L[1],...)."""

return map(sub, tuple(L)[1:], L)

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 2

Defining multi-argument map: zip and F(*S)

• Defining map requires

– The library function zip:

>>> tuple(zip((1, 2), (3, 4), (5, 6, 7)))

((1, 3, 5), (2, 4, 6))

– And Python’s “apply” and multi-argument syntax:

>>> def multi_arg(*args): print(args)

>>> multi_arg()

[]

>>> multi_arg(1)

[1]

>>> multi_arg(3, 4, 5)

[3, 4, 5]

>>> def two_argument_function(x, y): return 2*x + 3*y

>>> two_argument_function(3, 4)

18

>>> two_argument_function(*(3, 4))

18

• def map(func, *sequences):

return (func(*S) for S in zip(*sequences))

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 3

Odds and Ends: Membership

• Built-in Python sequences support the membership operation:

>>> 5 in (2, 3, 5, 7, 11, 13, 17, 19)

True

>>> 6 not in (2, 3, 5, 7, 11, 13, 17, 19)

True

>>> (3, 2) in ((1, 2), (3, 4), (6, 5), (2, 3))

False

>>>

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 4

Representing Multi-Dimensional Structures

• How do we represent a two-dimensional table (like a matrix)?

• Answer: use a sequence of sequences (such as a tuple of tuples).

• The same approach is used in C, C++, and Java.

• Example:
















1 2 0 4

0 1 3 −1

0 0 1 8

















becomes

((1, 2, 0, 4), (0, 1, 3, -1), (0, 0, 1, 8))

or

[[1, 2, 0, 4], [0, 1, 3, -1], [0, 0, 1, 8]]

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 5

The Game of Life: Another Problem

• J. H. Conway’s Game of Life is an example of a cellular automaton on
an infinite grid of squares.

• Each square may be occupied or unoccupied.

• One genertion of cells is computed from the preceding according to
a simple rule:

– An occupied empty square with 2 or 3 occupied neighbor squares
in one generation remains occupied in the next.

– An empty square with exactly 3 occupied neighbor squares in one
generation becomes occupied in the next.

– All other squares become or remain unoccupied in the next gen-
eration.

• One can build arbitrary computations from these simple rules, re-
sulting in remarkable patterns.

• (See http://www.youtube.com/watch?v=C2vgICfQawE)

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 6

http://www.youtube.com/watch?v=C2vgICfQawE

Counting Neighbors

• Consider the problem of computing the number of occupied neigh-
bors of each cell on a grid.

• We’ll use a slight modification: a finite grid that wraps around: the
top row is adjacent to the bottom, and the left column adjacent to
the right.

• Example (1 indicates occupancy; blank squares are 0):

Board
1 1 1
1 1 1
1 1

1 1 1
1 1

Neighbor Count
0 2 3 5 3 2 0 0
0 3 4 7 4 3 0 0
0 2 2 5 2 2 0 0
0 2 2 3 2 3 2 1
0 1 0 1 2 3 3 2
0 1 1 1 2 3 3 2
0 0 0 0 1 2 2 1
0 1 2 3 2 1 0 0

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 7

Strategy (I): Map2

• Suppose that we have a function like map that operates on sequeuces
of sequeuces.

def map2(f, A, B):

"""Given that A and B are 2-dimensional sequences, the result of

applying f to corresponding elements of A and B(as a tuple of tuples).

Extra rows or columns in one or the other argument are thrown away.

>>> map2(add, ((1, 2, 3), (4, 5, 6)), ((7, 8, 9), (10, 11, 12)))

((8, 10, 12), (14, 16, 18))

"""

return tuple(map(lambda ra, rb: tuple(map(f, ra, rb)),

A, B))

• With this, we can find the number of neighbors of each cell (with a
little help).

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 8

Strategy (II): rotate2

• Rotating a sequence right by N means moving its last N values to
the front, shifting the rest over.

• Rotating left by N moves the first N values to the end.

• We rotate 2D lists in two directions: rotating the rows and the
columns:

def rotate2(A, dr, dc):

"""Given that A is a 2-dimensional sequence the result of rotating each

row of A by DC columns and each column by DR rows. That is, a new

2D tuple, B, in which B[r+dr][c+dc] is A[r][c], wrapping at the ends.

>>> rotate2(((1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12)), (1, -1))

((11, 12, 10), (2, 3, 1), (5, 6, 4), (8, 9, 7))"""

def rotate(R, d):

Negative slice indices count from the right.

if d < 0:

return R[-len(R)-d:] + R[0: -d]

else:

return R[-d:] + R[0: len(R)-d]

rows = tuple(map(lambda row: rotate(row, dc), A))

return rotate(rows, dr)

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 9

Strategy (III): Adding Up Neighbors

• Now we can find number of neighbors (with wrap-around) by shifting
and adding:

A =
1 1 1
1 1 1
1 1

neighbor count(A) =
1 1 1
1 1

1 1 1

+
1 1 1
1 1

1 1 1

+
1 1 1
1 1

1 1 1

1 1 1
1 1 1
1 1

+
1 1 1
1 1 1
1 1

+ 1 1 1
1 1 1
1 1

+ . . .

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 10

Finally, neighbor count

Putting it all together:

def neighbor_count(A):

"""Given a life board A, the number of neighbors corresponding to each

cell as a tuple of tuples, assuming the board wraps around.

>>> neighbor_count(((0, 0, 0, 0),

... (0, 1, 0, 0),

... (0, 1, 1, 0),

... (0, 0, 0, 0)))

((1, 1, 1, 0), (2, 2, 3, 1), (2, 2, 2, 1), (1, 2, 2, 1))

"""

sum2 = lambda A, B: map2(add, A, B)

neighbors = ((-1, -1), (-1, 0), (-1, 1),

(0, -1), (0, 1),

(1, -1), (1, 0), (1, 1))

return reduce(sum2,

map(lambda d: rotate2(A, d[0], d[1]),

neighbors))

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 11

Strings: A Specialized Type of Sequence

• Strings are sequences of characters, with a good deal of special
syntax.

• Rather odd property: the base cases are circular. Characters are
themselves strings of length 1!

• The usual operations on tuples apply also to strings:

>>> "abcd"[0]

’a’

>>> len("abcd")

4

>>> "abcd"[1:3]

’bc’

>>> "ab" + "cd"

’abcd’

>>> "x" * 5

"xxxxx"

>>> for c in "abcd":

print(c, end=", ")

a, b, c, d,

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 12

Modified Operations

• Membership is not quite the same for strings:

>>> ’b’ in (’a’, ’b’, ’c’, ’d’) # A sequence, not a string

True

>>> ’bc’ in (’a’, ’b’, ’c’, ’d’)

False

But...

>>> ’b’ in ’abcd’

True

>>> ’bc’ in ’abcd’ # in Finds substrings

True

• The substring is generally more important than the character, in
other words.

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 13

Numerous Functions and Methods

• The calls str(x) and x.__str__() convert values of any type into
strings that depict them:

>>> str(3+7)

’10’ A string, not an int

• The methods reflect common manipulations from “real life”:

>>> "i can’t find my shift key".capitalize()

’I can’t find my shift key’.capitalize()

>>> "cHaNge".upper() + " CaSe".lower() + " raNDomLY".swapcase()

’CHANGE case RAndOMly’

>>> ’1234’.isnumeric() and ’abcd’.isalpha()

True

>>> ’SNAKEeyes’.upper().endswith(’YES’)

True

>>> ’{x} + {y} = {answer}’.format(answer=7, x=3, y=4)

’3 + 4 = 7’

>>> " ".join(map(lambda x: x.capitalize(), "a bunch of words".split()))

’A Bunch Of Words’

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 14

A Cast of Thousands

• Python3 uses Unicode as its basic character set: an international
standard comprising most alphabets (dead and alive).

• Characters have standard numbers (indicating position in the char-
acter set) and names. The Python ord and chr convert from charac-
ter to number and back.

• Getting your computer to actually render them all properly, however,
is another matter entirely, which is outside Python.

• The character codes from 0–127 (7-bit codes) are known as ASCII
(American Standard Code for Information Interchange). Everything
you typically type uses this subset.

• Nice property: 1 byte (8 bits) per character.

• This is lost with Unicode, but since there is an extra bit, we can
encode larger character codes (UTF-8).

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 15

Denoting Characters and Strings

• You’ve seen string literals all along. Python has 8 (!) styles. Consider
the string

\begin{quote}

"I’d rather be in Philadelphia."

\end{quote}

which we can write:

>>> "\\begin{quote}\n\"I’d rather be in Philadelphia.\"\n\\end{quote}"

>>> ’\\begin{quote}\n"I\’d rather be in Philadelphia."\n\\end{quote}’

>>> """\\begin{quote}

... "I’d rather be in Philadelphia."

... \\end{quote}"""

>>> ’’’\\begin{quote}

... "I’d rather be in Philadelphia."

... \\end{quote}"""

>>> r"""\begin{quote}

... "I’d rather be in Philadelphia."

... \end{quote}"""

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 16

Escapes

• The \ escape allows us to introduce special, non-graphical charac-
ters" newline \n, tab \t

• Or to insert quoting characters.

• Or Unicode characters:

"\u006b\u03b1\u03b2\u03b3\u03b6\u05d1\u05d0\u8071\u8072"

"\u263a\u2639"

[Try printing this on your home computer].

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 17

Strings as Sequences

• Most string operations are variations on the sequence operations
we’ve seen.

• Example: take a string, break it into lines, indent the lines by N

spaces, glue the lines back together, and return the result

def indent_lines(s, n):

"""The result of indenting each line in s by n spaces."""

return "\n".join(map(lambda line: " " * n + line,

s.split(’\n’)))

• Use it to indent a file:

print(indent_lines(open("afile").read(), 4))

• An even more general manipulation: regular expressions:

import re

def indent_lines(s, n):

return re.sub(r’(?m)^’, ’ ’ * n, s)

Further exploration left to the reader. E.g., see 13.py

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 18

13.py

Observation: Sequences as Conventional Interfaces

• Python 3 defines map, reduce, and filter on sequences just as we did
on rlists.

• So to compute the sum of the even Fibonacci numbers among the
first 12 numbers of that sequence, we could proceed like this:

First 20 integers:

0 1 2 3 4 5 6 7 8 9 10 11

Map fib:

0 1 1 2 3 5 8 13 21 34 55 89

Filter to get even numbers:

0 2 8 34

Reduce to get sum:

44

• . . . or:

reduce(add, filter(is_even, map(fib, range(12))))

• Why is this important? Sequences are amenable to parallelization.

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 19

An aside: Streams in Unix

• Many Unix utilities operate on streams of characters, which are
sequences.

• With the help of pipes, one can do amazing things. One of my fa-
vorites:

tr -c -s ’[:alpha:]’ ’[\n*]’ < FILE | \

sort | \

uniq -c | \

sort -n -r -k 1,1 | \

sed 20q

which prints the 20 most frequently occuring words in FILE, with
their frequencies, most frequent first.

Last modified: Tue Mar 18 16:17:54 2014 CS61A: Lecture #13 20

	Lecture #13: More Sequences and Strings
	Odds and Ends: Multi-Argument Map
	Defining multi-argument map: zip and F(*S)
	Odds and Ends: Membership
	Representing Multi-Dimensional Structures
	The Game of Life: Another Problem
	Counting Neighbors
	Strategy (I): Map2
	Strategy (II): rotate2
	Strategy (III): Adding Up Neighbors
	Finally, neighbor_count
	Strings: A Specialized Type of Sequence
	Modified Operations
	Numerous Functions and Methods
	A Cast of Thousands
	Denoting Characters and Strings
	Escapes
	Strings as Sequences
	Observation: Sequences as Conventional Interfaces
	An aside: Streams in Unix

