
Lecture #18: Complexity and Orders of Growth

• Certain problems take longer than others to solve, or require more
storage space to hold intermediate results.

• We refer to the time complexity or space complexity of a problem.

• But what does it mean to say that a certain program has a particular
complexity?

• What does it mean for an algorithm?

• What does it mean for a problem?

Last modified: Sun Mar 9 16:44:04 2014 CS61A: Lecture #18 1

A Direct Approach

• Well, if you want to know how fast something is, you can time it,
which Python happens to make easy:

>>> def fib(n):

... if n <= 1: return n

... else: return fib(n-2) + fib(n-1)

...

>>> import timeit

>>> timeit.repeat(’fib(10)’, ’from __main__ import fib’, number=5)

[0.0004911422729492188, 0.0004868507385253906, 0.0004870891571044922]

>>> timeit.repeat(’fib(20)’, ’from __main__ import fib’, number=5)

[0.06009697914123535, 0.06010794639587402, 0.06009793281555176]

• timeit.repeat(Stmt, Setup, number=N) says

Execute Setup (a string containing Python code), then execute
Stmt (a string) N times. Repeat this process 3 times and re-
port the time required for each repetition.

Last modified: Sun Mar 9 16:44:04 2014 CS61A: Lecture #18 2

A Direct Approach, Continued

• timeit.repeat alone gives a bit too much information: smallest value
is probably all that’s meaningful; can’t trust more that about two
significant digits; and would be more useful to get an average time
per iteration.

• Fortunately, we can always write programs to support writing pro-
grams!

>>> def desc_time(expr, setup="", number=1000):

... time = 1e6 * min(timeit.repeat(expr, setup, number=number)) / number

... return "{} loops, best of 3: {:.2g} usec per loop"\

... .format(number, int(time))

>>> print(desc_time(’fib(10)’, ’from __main__ import fib’))

10000 loops, best of 3: 97 usec per loop"""

• You can also get this effect from the command line:

...# python3 -m timeit --setup=’from fib import fib’ ’fib(10)’

10000 loops, best of 3: 97 usec per loop

• This command automatically chooses a number of executions of fib
to give a total time that is large enough for an accurate average,
repeats 3 times, and reports the best time.

Last modified: Sun Mar 9 16:44:04 2014 CS61A: Lecture #18 3

Strengths and Problems with Direct Approach

• Good: Gives actual times; answers question completely for given in-
put and machine.

• Bad: Results apply only to tested inputs.

• Bad: Results apply only to particular programs and platforms.

• Bad: Cannot tell us anything about complexity of algorithm or of
problem.

Last modified: Sun Mar 9 16:44:04 2014 CS61A: Lecture #18 4

But Can’t We Extrapolate?

• Why not try a succession of times, and use that to figure out timing
in general?

...# for t in 5 10 15 20 25 30; do

> echo -n "$t: "

> python3 -m timeit --setup=’from fib import fib’ "fib($t)"

> done

5: 100000 loops, best of 3: 8.16 usec per loop

10: 10000 loops, best of 3: 96.8 usec per loop

15: 1000 loops, best of 3: 1.08 msec per loop

20: 100 loops, best of 3: 12 msec per loop

25: 10 loops, best of 3: 133 msec per loop

30: 10 loops, best of 3: 1.47 sec per loop

• This looks to be exponential in t with exponent of ≈ 1.6.

• But. . . what if the program special-cases some inputs?

• . . . and this still only works for a particular program and machine.

Last modified: Sun Mar 9 16:44:04 2014 CS61A: Lecture #18 5

Worst Case, Average Case

• To avoid the problem of getting results only for particular inputs,
we usually ask a more general question, such as:

– What is the worst case time to compute f(X) as a function of the
size of X , or

– what is the average case time to compute f(X) over all values of
X (weighted by likelihood).

• Average case is hard, so we’ll let other courses deal with it.

• But now we seem to have a harder problem than before: how do we
get worst-case times? Doesn’t that require testing all cases?

• And when we do, aren’t we still sensitive to machine model, compiler,
etc.?

Last modified: Sun Mar 9 16:44:04 2014 CS61A: Lecture #18 6

Operation Counts and Scaling

• Instead of getting precise answers in units of physical time, we
therefore settle for a proxy measure that will remain meaningful
over changes in architecture or compiler.

• Choose some operation(s) of interest and count how many times they
occur.

• Examples:

– How many times does fib get called recursively during computa-
tion of fib(N)?

– How many addition operations get performed by fib(N)?

• You can no longer get precise times, but if the operations are well-
chosen, results are proportional to actual time for different values
of N .

• Thus, we look at how computation time scales in the worst case.

• Can compare programs/algorithms on the basis of which scale bet-
ter.

Last modified: Sun Mar 9 16:44:04 2014 CS61A: Lecture #18 7

Example: Search

• Here’s a simple search function:

def find_first(L, p):

"""The index of the first item in list L that satisfies

predicate function P, or -1 if none does."""

for i, x in enumerate(L): # Yields (0, L[0]), (1, L[1]),...

if p(x): return i

return -1

• It is reasonable to count calls to p as a measure.

• Sometimes, this will return immediately (if p(L[0])).

• Can’t say much about the average case without knowing more.

• Worst case is that no item satisfies p,

• . . . in which case, # calls to p == len(L).

Last modified: Sun Mar 9 16:44:04 2014 CS61A: Lecture #18 8

Example: Intersection

• Now let’s look at two lists:

def find_common(L0, L1):

"""Returns True iff L0 and L1 have an item in common."""

for x in L0:

for y in L1:

if x == y: return True

return False

• When will this program take longest?

• If we count comparisons (==), how long will the worst case take?

• Or, if N = len(L0) = len(L1), then .

Last modified: Sun Mar 9 16:44:04 2014 CS61A: Lecture #18 9

Example: Intersection

• Now let’s look at two lists:

def find_common(L0, L1):

"""Returns True iff L0 and L1 have an item in common."""

for x in L0:

for y in L1:

if x == y: return True

return False

• When will this program take longest? When there are no common items.

• If we count comparisons (==), how long will the worst case take?

• Or, if N = len(L0) = len(L1), then .

Last modified: Sun Mar 9 16:44:04 2014 CS61A: Lecture #18 9

Example: Intersection

• Now let’s look at two lists:

def find_common(L0, L1):

"""Returns True iff L0 and L1 have an item in common."""

for x in L0:

for y in L1:

if x == y: return True

return False

• When will this program take longest? When there are no common items.

• If we count comparisons (==), how long will the worst case take?
len(L0) · len(L1)

• Or, if N = len(L0) = len(L1), then N 2.

Last modified: Sun Mar 9 16:44:04 2014 CS61A: Lecture #18 9

Example: Duplicates

• This function looks for repeated items in a sequence:

def are_duplicates(L):

for i, x in enumerate(L):

for j, y in enumerate(L, i+1): # Starts at i+1

if x == y: return True

return False

• Again, this returns False in the worst case.

• Formula is more complicated, though. If N is len(L), then it executes
the == operation

∑

1≤k<N
N − k = (N − 1) + (N − 2) + . . . + 0 = times.

• This formula is already getting a bit complicated.

• But it scales at the same rate as for find common when both argu-
ments have the same length, i.e.:

– Doubling the size of the input quadruples the time.

Last modified: Sun Mar 9 16:44:04 2014 CS61A: Lecture #18 10

Example: Duplicates

• This function looks for repeated items in a sequence:

def are_duplicates(L):

for i, x in enumerate(L):

for j, y in enumerate(L, i+1): # Starts at i+1

if x == y: return True

return False

• Again, this returns False in the worst case.

• Formula is more complicated, though. If N is len(L), then it executes
the == operation

∑

1≤k<N
N − k = (N − 1) + (N − 2) + . . . + 0 = N(N − 1)/2 times.

• This formula is already getting a bit complicated.

• But it scales at the same rate as for find common when both argu-
ments have the same length, i.e.:

– Doubling the size of the input quadruples the time.

Last modified: Sun Mar 9 16:44:04 2014 CS61A: Lecture #18 10

Expressing Approximation

• We are looking for measures of program performance that give us a
sense of how computation time scales with size of input.

• Sometimes, results for “small” values are not indicative.

– E.g., suppose we have a prime-number tester that contains a look-
up table of the primes up to 1,000,000,000 (about 50 million
primes).

– Tests for numbers up to 1 billion will be faster than for larger
numbers.

• In general, we are interested in ignoring finite sets of special cases
that a given program can compute quickly.

• So we tend to ask about asymptotic behavior of programs: as size
of input goes to infinity.

• Finally, precise worst-case functions can be very complicated, and
the precision is generally not terribly important anyway.

• These considerations motivate the use of order notation to charac-
terize functions that approximate execution time or space.

Last modified: Sun Mar 9 16:44:04 2014 CS61A: Lecture #18 11

The Notation

• We use the notation O(f) to mean “the set of all one-parameter
functions whose absolute values are eventually bounded above by
some multiple of f ’s absolute value.” Formally:

O(f) = {g | there exist p,M such that if x > M , |g(x)| ≤ p|f(x)|}

• Similarly, we have “the set of all one-parameter functions whose
absolute values are eventually bounded below by some multiple of
f ’s absolute value:”

Ω(f) = {g | there exist q > 0, M such that if x > M , q|f(x)| ≤ |g(x)|}

• And finally those bounded both above and below:

Θ(f) = Ω(f) ∩ O(f)

= {g | ∃ q > 0, p, and M such that q|f(x)| ≤ |g(x)| ≤ p|f(x)|, for x > M}

Last modified: Sun Mar 9 16:44:04 2014 CS61A: Lecture #18 12

	Lecture #18: Complexity and Orders of Growth
	A Direct Approach
	A Direct Approach, Continued
	Strengths and Problems with Direct Approach
	But Can't We Extrapolate?
	Worst Case, Average Case
	Operation Counts and Scaling
	Example: Search
	Example: Intersection
	Example: Duplicates
	Expressing Approximation
	The Notation

