
CS61A Lecture #28: The Halting Problem and
Incompleteness

• An interpreter (or compiler) is a program that operates on programs.

• In fact, there are numerous other ways to operate on programs. For
example,

– Given a one-parameter function in some language, produce the
function that computes its derivative.

– Given a C program, add statements that check for memory index
bounds errors.

• The development of program-analysis tools of this sort is an active
research area.

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 1

The Halting Problem

• For example, would be very useful to know “Is
there some input to Scheme function P that
will cause it to go into an infinite loop?” Is
there a program that operates on programs
that will answer this question correctly in fi-
nite time?

• This question was answered negatively in the 1930s by Alan Turing.
In fact, there isn’t even a program that fully meets the following
specification:

;; True iff DEFN is a Scheme definition that defines a one-argument

;; function that eventually halts given the input X.

(define (halts? defn x) ...)

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 2

Biting Your Tail: Proof of Impossibility

(define (halts? defn x) alleged definition of halts?)
(define halts?-bogus-program

(quote (define (halts?-bogus x)

(define (halts? defn x) alleged definition of halts?)
(define (loop) (loop))

(if (halts? x x) (loop) #t))))

(halts? halts?-bogus-program halts?-bogus-program) ; (*)

• Assume that halts? works as specified: (halts? defn y) returns
true if defn is a Scheme definition of some one-argument function
that halts (does not loop) when given input y.

• Then if the line marked (*) returns true, it is supposed to mean
that (halts?-bogus halts?-bogus-program) halts.

• But halts?-bogus computes (halts? x x) during its execution,
with the value of x being halts?-bogus-program.

• That would presumably return true, which would make halts?-bogus
loop infinitely.

• So clearly, if halts? works, line (*) cannot return true after all; it
must return false.

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 3

Biting Your Tail (II)

(define (halts? defn x) alleged definition of halts?)
(define halts?-bogus-program

(quote (define (halts?-bogus x)

(define (halts? defn x) alleged definition of halts?)
(define (loop) (loop))

(if (halts? x x) (loop) #t))))

(halts? halts?-bogus-program halts?-bogus-program) ; (*)

• But if the line marked (*) returns false, then the execution of
halts?-bogus would terminate, which would mean that halts? had
gotten the wrong answer.

• The only way out is to conclude that halts? never returns in this
case—it does not answer the question for all possible inputs.

• Putting it all together, we must conclude that

No possible definition of halts? works all the time.

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 4

Not Just a Trick

• Nothing in this argument is specific to Scheme.

• Furthermore, Scheme is capable of representing any “effectively
computable” function on symbolic data (i.e, computable via some finitely
describable algorithm that terminates).

• Therefore, the impossibility of the halting problem is fundamental:
the halts? function is uncomputable.

• If halts? always returns a correct result (when it returns), then
there must be an infinite number of inputs for which it fails to give
any answer at all (i.e., loops infinitely). Why infinite?

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 5

Consequences

• There’s a lot of fallout from the impossibility of writing halts?.

• For example, I cannot tell in general whether two programs compute
the same thing. [Why not?]

• Therefore,

Perfect anti-virus software is theoretically impossible.

Anti-virus software must either miss some viruses, or prevent some
innocent programs from running (or freeze your computer.)

• Many analyses that might be useful cannot be done in general. For
example, even if I know that a given program will terminate, I cannot
necessarily predict in general how long it will take to do so.

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 6

The Mathematics of Mathematics

Gottlob Frege (1879) is usually credited
with introducing the first modern formal
system for expressing mathematical and
logical statements and arguments. He was
attempting to put mathematics on a firm
foundation—to make it clear when a proof
was a proof, for example.

Frege invented a universal syntax for expressing mathematical state-
ments. Examples (with modern notation underneath):

S(s) → H(j) S(s)&H(j) ¬∀a(P (x) → ¬M(a)) or ∃a(P (a)&M(a))

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 7

Formal Systems

• A formal system then consists of a set of symbols that are supposed
to have meanings (constants, functions, predicates), plus a finite set
of axioms (like ∀x, y.x + y = y + x), axiom schemas (templates for
axioms, like A ∧ B ⇒ A), and mechanical inference rules.

• Creation of formal systems turned out to be tricky:

– Russell’s Paradox: Frege’s original system allowed the definition
(in effect) of S = {x|x 6∈ x}, the set of everything that is not a
member of itself.

– This is a highly problematic set! Can prove both that S ∈ S and
S 6∈ S.

– Therefore, Frege’s system was inconsistent, which is bad.

• Fortunately, a syntax such as Frege’s is very well defined; sentences
and proofs are themselves mathematical objects. So, perhaps we
can build a mathematics of mathematics (“metamathematics”) and
within it prove that our formal systems are consistent: Hilbert’s
Program.

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 8

From Syntax to Semantics

• Notations like these provide notation (syntax) without meaning (se-
mantics), . . .

• . . . except for a few key symbols with fixed meanings:

– Logical connectives, such as ‘&’, ‘¬’, ‘→’.

– Quantifiers, such as ‘∀’ (for all), ‘∃’ (there exists), and the vari-
ables they apply to (but we don’t say what set (“domain”) they
quantify over.)

– (Sometimes) the predicate ‘=’.

• But otherwise, the functions and predicates (true/false functions)
are uninterpreted.

• So what good is it? How can we get meaningful information by just
manipulating meaningless symbols?

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 9

Meaning from Assertions

• Even if we can’t say exactly what a symbols means, we can assert
various sentences about it that constrain its possible meanings.

• For example, suppose that, besides the standard logical connectives,
quantifiers, and =, we allow only the relation predicate ≤.

• If we say nothing else, ≤ could mean anything.

• But suppose we assert a few things:

∀x, y(x ≤ y ∨ y ≤ x)

∀x, y(x ≤ y & y ≤ x → x = y)

∀x, y, z(x ≤ y & y ≤ z → x ≤ z)

• This restricts the possible meanings of ≤ to total orderings.

• Certain other things must now be true. E.g., ∀x(x ≤ x).

• But there are additional statements involving only ≤ whose truth is
not so constrained. Example? ∃y∀x(y ≤ x)

• For our “theory of ≤”, it is possible to add additional axioms to
eliminate all such independent statements. Is this always possible?

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 10

Proofs

• Big Idea: If we can add enough constraints to get the properties
we want for our symbols, we can dispense with messy meanings (se-
mantics) and do everything by manipulations of syntax (e.g., which
we could represent as operations on Scheme expressions).

• We call these constraining assertions

– Axioms: (e.g, ∀x, y(x ≤ y ∨ y ≤ x))

– Axiom schemas: templates standing for an infinite number of ax-
ioms, such as A & B → A.

• A proof of a statement, A, is defined as a finite sequence of finite
statements ending with A such that each statement is either

– An axiom (like ∀x, y.x + y = y + x), or an instance of an axiom
schema (like x < y ∧ y < z ⇒ x < y, which is the result of
plugging x < y and y < z into A ∧ B ⇒ A); or

– The result of applying one of a few inference rules to preceding
statements in the proof. Most well-known inference rule is modus
ponens: can add D to a proof if there are preceding statements
C and C ⇒ D. Usually don’t have too many other rules.

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 11

Proofs (II)

• The set of axioms and schemas is finite, and a program can tell if it
is looking at an axiom.

• Likewise, the inference rules must be finite and algorithmically check-
able.

• Given an alleged formal proof, it is a purely clerical task to deter-
mine that it actually is a proof.

• A mathematician’s secretary or a program can make this determina-
tion.

• Furthermore, if a proof of A exists, can find it in finite (albeit
enormous) time by generating and checking all possible proofs.

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 12

Gödel Numbers

• Formulas and proofs in a formal system are just finite sequences of
symbols from some finite alphabet. So are programs.

• We can encode any sequence of symbols as an integer in many ways.
For example, produce a mapping like

’a’ => 01, ’b’ => 02, ..., ’0’ => 53, ..., ’+’ => 63, ’*’ => 64, ...

and then, e.g., encode "a*c" as 016403.

• Such an encoding is called a Gödel numbering of the formulas, proofs,
programs, or other symbol string.

• Why is this interesting? It allows us to do symbol manipulation with
arithmetic. In fact, it allows us to write and prove theorems about
symbols, logical statements, proofs, and programs using the theory
of integers.

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 13

Incompleteness

• Using nothing but the standard arithmetical operators, logical sym-
bols, and free integer variables p, x, and k, can write a sentence,
call it Hp,x,k, that means “the program represented by Gödel num-
ber p, when given the input x, finishes running in k steps.” (It’s not
difficult, but really tedious; take my word for it).

• So the formula ∃k.Hp,x,k means “program p halts given input x.”

• If we can prove this formula, we have shown that program p halts,
and if we can prove ¬∃k.Hp,x,k, we have shown that p does not halt.

• But I said in a previous slide that if there is a proof of a statement,
a program can find it. So by writing a program that, given x and
p, tries to prove both ∃k.Hp,x,k and ¬∃k.Hp,x,k, we could solve the
halting problem (the program would generate all possible proofs and
check each one to see if it proved one of the two sentences.)

• But the halting problem is unsolvable. Therefore:

There must be values of p and x such that neither ∃k.Hp,x,k nor
¬∃k.Hp,x,k can be proven.

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 14

The Incompleteness Theorem

• This result is a weak form of Gödel’s
(First) Incompleteness Theorem (1931).
Any consistent mathematical system
that includes the theory of the inte-
gers must contain an infinite number of
undecidable propositions where neither
the proposition nor its negation have a
proof.

• Two big questions surround these formal systems we’ve been talking
about:

– Are they consistent: Is what they purport to prove true?

– Are they complete: Can all the true things be proven?

• Consistency allows us to have faith in our proofs. Completeness al-
lows us to rely on proof exclusively.

• The incompleteness theorem might seem to say that the latter is
impossible.

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 15

Completeness

• But now things get really strange.

• The year before Gödel proved the first of his incompleteness theo-
rems, he proved the Completeness Theorem:

Any valid logical sentence is provable.

• But one of ∃k.Hp,x,k and ¬∃k.Hp,x,k has to be true, so how can they
both be unprovable?

• There is but one way out: “valid” doesn’t mean what we think.

• A sentence is valid if it is true for all models: all choices of what
set of values (“domain”) ∀x covers and all interpretations of its “non-
built-in” symbols (e.g., ≤, +, -, *, 0, etc.) that satisfy the axioms.

• So a statement can be true in one model and yet not be valid if it is
false under a different model.

• So perhaps it is not that we can’t know whether some statements
are true so much as that we can choose whether we want them to
be true, by selecting the right model.

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 16

Nonstandard Models

• To choose a model (or rather to “unchoose” some other models), we
add axioms to our system, narrowing down the possible models.

• Sometimes (as with our “theory of ≤”), we can narrow things down
to the point where all statements are either provable or disprovable.
These systems are complete.

• Gödel’s result, however, tells us that when a system becomes power-
ful enough (specifically, when it encompasses enough of the theory
of the integers), it is no longer possible to complete it in this fash-
ion, except by adding contradictory axioms that make our system
inconsistent. (At which point, all statements are provable, which is
useless.)

• One implication:

There must be non-standard models of arithmetic—interpretations
in which there are integers other than the familiar 0, 1, 2,

Last modified: Wed Apr 9 03:16:48 2014 CS61A: Lecture #28 17

	CS61A Lecture #28: The Halting Problem and Incompleteness
	The Halting Problem
	Biting Your Tail: Proof of Impossibility
	Biting Your Tail (II)
	Not Just a Trick
	Consequences
	The Mathematics of Mathematics
	Formal Systems
	From Syntax to Semantics
	Meaning from Assertions
	Proofs
	Proofs (II)
	Gto¨odel Numbers
	Incompleteness
	The Incompleteness Theorem
	Completeness
	Nonstandard Models

