
CS61A Lecture #38: Conclusion

Announcements:

• “Homework” 11 will be judging the contest. Due next Friday.

• Contest submissions due next Tuesday at midnight. Submit your
contest.scm file and Scheme project files (updated if needed) as
proj4contest.

• HKN surveys TODAY: 5 bonus points for filling out their survey. Be
sure to sign the sign-up sheet.

• Please fill out our own final survey by Friday, 16 May (worth 1.5
points). If at least 90% of the class fills it out, everyone gets an-
other point! See class web page.

• Andrew is looking for lab assistants for summer 61A. Lab assist to
help students (as you were helped), reinforce what you’ve learned,
and become a better teacher. You may lab assist for units, and if
you’re interested in reading or TAing in the future, this is the first
step. See Piazza for details.

• Guerrilla section this Monday at 7pm on Scheme, Logic Programming,
and Streams in 271 Soda. Check Piazza for details.

Last modified: Fri May 2 13:45:36 2014 CS61A: Lecture #38 1

A Summary of Topics

• Programming primitives

• Derived programming structures

• Programming-language concepts, design, and implementation

• Programming “Paradigms”

• Software engineering

• Analysis

• Side excursions

• What’s Next?

Last modified: Fri May 2 13:45:36 2014 CS61A: Lecture #38 2

Programming Primitives

• Recursion: the all-encompassing repetitive construct; recursive think-
ing

• Pairs: A universal data-structuring tool.

• Functions as data values, functions on functions

• Exceptions: Dealing with errors.

• Classes.

Last modified: Fri May 2 13:45:36 2014 CS61A: Lecture #38 3

Derived Programming Structures

• Can build almost anything from primitives.

• Although Python also has specialized implementations of some im-
portant data structures.

• Sequences:

– Lists: traversals, searching, inserting, deleting (destructive and
non-destructive)

– Trees: traversals, binary search trees, constructing, inserting,
deleting

• Maps.

• Sequences: creating, traversing, searching,

• Iterators, generators.

• Trees: uses, traversing, and searching.

Last modified: Fri May 2 13:45:36 2014 CS61A: Lecture #38 4

Programming-Language Concepts, Design,
Implementation

• Python was developed largely as a teaching language, and is simpler
in many ways than other “production” languages. . .

• And yet, it is a good deal more powerful (as measured by work done
per line of code) than these same languages.

• Still, as you’ve seen, there are problems, too: dynamic vs. static
discovery of errors.

• Big item: scope (what instance of what definition applies to evalu-
ation of an identifier). This is what environment diagrams are in-
tended to model.

– Alternative: dynamic scoping.

• Implementing a language [CS164]:

– Interpreters

– Trees as an intermediate language

– Relationship of run-time environment representation to scope rules.

– “Little” languages as a programming tool

Last modified: Fri May 2 13:45:36 2014 CS61A: Lecture #38 5

Paradigms

• Functional programming: expressions, not statements; no side-effects;
use of higher-order functions.

• Streams

• Data-directed and object-oriented programming

– Organize program around types of data, not functions

– Inheritance

– Interface vs. implementation

• Rule-based programming (Prolog)

– Declarative rather than imperative

– Rule → action idea.

– Logic programming:

∗ Pattern matching, pattern variables as a programming tool

∗ Declarative and imperative interpretation

∗ Application to parsing

Last modified: Fri May 2 13:45:36 2014 CS61A: Lecture #38 6

http://tinyurl.com/msy72mg


Software Engineering

• Biggest ideas: Abstraction, separation of concerns

• Specification of a program vs. its implementation

– Syntactic spec (header) vs. semantic spec (comment).

– Example of multiple implementations for the same abstract be-
havior

• Testing: for every program, there is a test.

– In “Extreme Programming” there is a test for every module.

• Software engineering implicit in all our software courses, explicit in
CS169.

Last modified: Fri May 2 13:45:36 2014 CS61A: Lecture #38 7

Analysis

• What we can measure when we measure speed:

– Raw time.

– Counts of selected representative operations.

– Symbolic expressions of running time.

– Best/worst case.

• Application of asymptotic notation (Θ(·), etc.) to summarizing sym-
bolic time measurements concisely.

Last modified: Fri May 2 13:45:36 2014 CS61A: Lecture #38 8

Important Side Excursions

• User Interfaces: there are principles behind making computers us-
able.

• Cryptography:

– protecting integrity, privacy, and authenticity of data.

– Symmetric (DES, Enigma) and asymmetric (public-key) methods.

• Computatbility [CS172]: Some functions cannot be computed. Prob-
lems that are “near” such functions cannot be computed quickly.

Last modified: Fri May 2 13:45:36 2014 CS61A: Lecture #38 9

What’s Next (Course-Wise)?

• CS61B: (conventional) data structures and languages

• CS61C: computing hardware as programmers see it.

• CS170, CS172, CS174: “Theory”—analysis and construction of al-
gorithms, theoretical models of computation, use of probabilistic
algorithms and analysis.

• CS161: Security

• CS162: Operating systems.

• CS164: Implementation of programming languages.

• CS160, CS169: User interfaces, software engineering.

• CS188: Artificial intelligence.

• CS184: Graphics.

• CS186: Databases.

Last modified: Fri May 2 13:45:36 2014 CS61A: Lecture #38 10

What’s Next (Course-Wise) (II)

• CS189: Machine Learning.

• CS191: Quantum Computing.

• EE C125: Robotics

• EECS C149: Embedded Systems.

• CS 150: Digital Systems Design

• CS 176: Computational Biology

• CS194: Special topics. (E.g.) parallel software; computer anima-
tion; data science; networks, crowds, and markets; cell phones as a
computing platform.

• Plus graduate courses on these subjects and more.

• And please don’t forget CS199 and research projects.

Last modified: Fri May 2 13:45:36 2014 CS61A: Lecture #38 11

What’s Next (Otherwise)?

• Programming contests.

• The open-source world: Go out and build something!

• And above all: Have Fun!

Last modified: Fri May 2 13:45:36 2014 CS61A: Lecture #38 12


	CS61A Lecture #38: Conclusion
	A Summary of Topics
	Programming Primitives
	Derived Programming Structures 
	Programming-Language Concepts, Design, Implementation
	Paradigms
	Software Engineering
	Analysis
	Important Side Excursions
	What's Next (Course-Wise)?
	What's Next (Course-Wise) (II)
	What's Next (Otherwise)?

