CS 61A Lecture 11

Wednesday, February 18

Announcements

<Optional Hog Contest due Wednesday 2/18 @ 11:59pm
-Homework 3 due Thursday 2/19 @ 11:59pm
-Project 2 due Thursday 2/26 @ 11:59pm

Bonus point for early submission by Wednesday 2/25 @ 11:59pm!

Box-and-Pointer Notation

The Closure Property of Data Types

* A method for combining data values satisfies the closure property if:

The result of combination can itself be combined using the same method
* Closure is powerful because it permits us to create hierarchical structures

e Hierarchical structures are made up of parts, which themselves are made up
of parts, and so on

Lists can contain lists as elements (in addition to anything else)

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element
Each box either contains a primitive value or points to a compound value

Global frame list

o
pair [« >

pair = [1, 2]

Interactive Diagram

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element
Each box either contains a primitive value or points to a compound value

Global frame list
0
pair >

nested_list
\ list
o |1

pair = [1, 2]

nested_list = [[1, 2], []. False = None
[[3, False, None],
[4, lambda: 5]1]

/func AQ) <line 5> [parent=Global]
1

Interactive Diagram

Sequence Operations

Membership & Slicing

Python sequences have operators for membership and slicing

Membershi digits = [1, 8, 2, 8] |Global frame list
lembership. start = digits[:1] digits [« > o |1 |2 |3
S, 18|28
>>> digits = [1, 8, 2, 8] middle = digits(1:3] start
>>> 2 in digits end = digits[2:])
True middle list
>>> 1828 not in digits end 0
True 1
list
Slicing. 0o |1
82
Tz> g%gitS[@‘Z] Slicing creates a new object]
>>> digits[1:] ";t 2
[8, 2, 8]

Trees

Tree Abstraction

5 3 " <— Branch
/N
1 1
‘0/‘ N | 1 / 24— Node
teafyll 1 7N /N
0 101 1
: / N
Sub-tree —p | 0 1

A tree has a root value and a sequence of branches; each branch is a tree
A tree with zero branches is called a leaf

The root values of sub-trees within a tree are often called node values or nodes

Implementing the Tree Abstraction

def tree(root, branches=[]):
return [root] + branches

A tree has a root value and
a sequence of branches;
each branch is a tree
def root(tree):
return tree[0]

3
def branches(tree): / \
1 2
/ N

return tree[1:]

1 1

>>> tree(3, [tree(1),
tree(2, [tree(1),
]]}ree(l)])])

Implementing the Tree Abstraction

def tree(root, branches=[]):
/for branch in branches: Verifi
assert is_tree(branch) \ tr€€ i
return [root] +ilist(branches):

def root(tree): Creates a list 3
return tree[o] | from a sequence / \
of branches
1 2
/ N

A tree has a root value and
a sequence of branches;
each branch is a tree

def branches(tree):
return tree[1:]

Verifies that
tree is bound 1 1
to a list

a
@
LY

is_tree(tree): >>> tree(3, [tree(1)
if {type(tree) != listior len(tree) < 1: e tree(2, [tree(1),
Feturn Faise tree(1)1)1)
for branch in branches(tree):
if not is_tree(branch):
return False
return True

def is_leaf(tree):
return not branches(tree) (Demo)

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

def count_leaves(tree):
"""Count the leaves of a tree."""
if is_leaf(tree):
return 1
else:
branch_counts = [count_leaves(b) for b in treel

return sum(branch_counts)

(Demo)

Discussion Question

Implement leaves, which returns a list of the leaf values of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

>>> sum([[1] 1, [1) def leaves(tree)

i ""iReturn a list containing the leaves of tree.
>>> sum([[[111, [2] 1, [1) :

(111, 2] >>> leaves(fib_tree(5)

>>> sun([[11, [2, 31, (41 1, (1) [1, 0, 1,0, 1,1, 0, 1]

[1, 2, 3, 41 o

if is_leaf(tree):
return [root(tree)]

else:
return sum([leaves(b) for b in branches(tree)l, [1))

Example: Partition Trees

(Demo)

Interactive Diagram

