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Announcements

• Delayed: Hog contest winners will be announced Friday 3/6 in lecture

• Quiz 2 due Thursday 3/5 @ 11:59pm (challenging!)

• Project 3 due Thursday 3/12 @ 11:59pm (get started now!)

• Delayed: Homework 6 due Monday 3/16 @ 11:59pm

• Midterm 2 is on Thursday 3/19 7pm-9pm

§Emphasis: mutable data, object-oriented programming, recursion, and recursive data
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More Generic Functions

A function might want to operate on multiple data types

Last lecture: 

• Polymorphic functions using shared messages

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

This lecture:

• An arithmetic system over related types

• Operator overloading

• Type dispatching

• Type coercion

What's different? Today's generic functions apply to multiple arguments that 
                  don't share a common interface.
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class Rational: 
    """A rational number represented as a numerator and denominator.""" 
    def __init__(self, numer, denom): 
        g = gcd(numer, denom) 
        self.numer = numer // g 
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    def add(self, other): 
        nx, dx = self.numer, self.denom 
        ny, dy = other.numer, other.denom 
        return Rational(nx * dy + ny * dx, dx * dy) 
!
    def mul(self, other): 
        numer = self.numer * other.numer 
        denom = self.denom * other.denom 
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class Complex: 
    def add(self, other): 
        return ComplexRI(self.real + other.real, 
                         self.imag + other.imag) 
    def mul(self, other): 
        return ComplexMA(self.magnitude * other.magnitude,  
                         self.angle + other.angle)



Complex Numbers

class ComplexRI(Complex): 
    """A rectangular representation.""" 
    def __init__(self, real, imag): 
        self.real = real 
        self.imag = imag 
!
    @property 
    def magnitude(self): 
        return (self.real ** 2 + self.imag ** 2) ** 0.5 
!
    @property 
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        return atan2(self.imag, self.real)
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(Demo)

class ComplexMA(Complex): 
    """A polar representation.""" 
    def __init__(self, magnitude, angle): 
        self.magnitude = magnitude 
        self.angle = angle 
!
    @property 
    def real(self): 
        return self.magnitude * cos(self.angle) 
!
    @property 
    def imag(self): 
        return self.magnitude * sin(self.angle)

class Complex: 
    def add(self, other): 
        return ComplexRI(self.real + other.real, 
                         self.imag + other.imag) 
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def add_complex_and_rational(c, r): 
    """Return c + r for complex c and rational r.""" 
    return ComplexRI(c.real + r.numer/r.denom, c.imag)
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Question: Can any two numeric types be coerced into a common type?

Question: Is coercion exact?
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