
61A Lecture 17

Wednesday, March 4

Announcements

2

Announcements

• Delayed: Hog contest winners will be announced Friday 3/6 in lecture

2

Announcements

• Delayed: Hog contest winners will be announced Friday 3/6 in lecture

• Quiz 2 due Thursday 3/5 @ 11:59pm (challenging!)

2

Announcements

• Delayed: Hog contest winners will be announced Friday 3/6 in lecture

• Quiz 2 due Thursday 3/5 @ 11:59pm (challenging!)

• Project 3 due Thursday 3/12 @ 11:59pm (get started now!)

2

Announcements

• Delayed: Hog contest winners will be announced Friday 3/6 in lecture

• Quiz 2 due Thursday 3/5 @ 11:59pm (challenging!)

• Project 3 due Thursday 3/12 @ 11:59pm (get started now!)

• Delayed: Homework 6 due Monday 3/16 @ 11:59pm

2

Announcements

• Delayed: Hog contest winners will be announced Friday 3/6 in lecture

• Quiz 2 due Thursday 3/5 @ 11:59pm (challenging!)

• Project 3 due Thursday 3/12 @ 11:59pm (get started now!)

• Delayed: Homework 6 due Monday 3/16 @ 11:59pm

• Midterm 2 is on Thursday 3/19 7pm-9pm

2

Announcements

• Delayed: Hog contest winners will be announced Friday 3/6 in lecture

• Quiz 2 due Thursday 3/5 @ 11:59pm (challenging!)

• Project 3 due Thursday 3/12 @ 11:59pm (get started now!)

• Delayed: Homework 6 due Monday 3/16 @ 11:59pm

• Midterm 2 is on Thursday 3/19 7pm-9pm

§Emphasis: mutable data, object-oriented programming, recursion, and recursive data

2

Generic Functions of Multiple Arguments

More Generic Functions

4

More Generic Functions

A function might want to operate on multiple data types

4

More Generic Functions

A function might want to operate on multiple data types

Last lecture:

4

More Generic Functions

A function might want to operate on multiple data types

Last lecture:

• Polymorphic functions using shared messages

4

More Generic Functions

A function might want to operate on multiple data types

Last lecture:

• Polymorphic functions using shared messages

• Interfaces: collections of messages that have specific behavior conditions

4

More Generic Functions

A function might want to operate on multiple data types

Last lecture:

• Polymorphic functions using shared messages

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

4

More Generic Functions

A function might want to operate on multiple data types

Last lecture:

• Polymorphic functions using shared messages

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

This lecture:

4

More Generic Functions

A function might want to operate on multiple data types

Last lecture:

• Polymorphic functions using shared messages

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

This lecture:

• An arithmetic system over related types

4

More Generic Functions

A function might want to operate on multiple data types

Last lecture:

• Polymorphic functions using shared messages

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

This lecture:

• An arithmetic system over related types

• Operator overloading

4

More Generic Functions

A function might want to operate on multiple data types

Last lecture:

• Polymorphic functions using shared messages

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

This lecture:

• An arithmetic system over related types

• Operator overloading

• Type dispatching

4

More Generic Functions

A function might want to operate on multiple data types

Last lecture:

• Polymorphic functions using shared messages

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

This lecture:

• An arithmetic system over related types

• Operator overloading

• Type dispatching

• Type coercion

4

More Generic Functions

A function might want to operate on multiple data types

Last lecture:

• Polymorphic functions using shared messages

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

This lecture:

• An arithmetic system over related types

• Operator overloading

• Type dispatching

• Type coercion

What's different? Today's generic functions apply to multiple arguments that 
 don't share a common interface.

4

Rational Numbers

5

Rational Numbers

class Rational:
 """A rational number represented as a numerator and denominator."""
 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g
!
 def __repr__(self):
 return 'Rational({0}, {1})'.format(self.numer, self.denom)

5

Rational Numbers

class Rational:
 """A rational number represented as a numerator and denominator."""
 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g
!
 def __repr__(self):
 return 'Rational({0}, {1})'.format(self.numer, self.denom)

Greatest common
divisor

5

Rational Numbers

class Rational:
 """A rational number represented as a numerator and denominator."""
 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g
!
 def __repr__(self):
 return 'Rational({0}, {1})'.format(self.numer, self.denom)

Greatest common
divisor

5

 def add(self, other):
 nx, dx = self.numer, self.denom
 ny, dy = other.numer, other.denom
 return Rational(nx * dy + ny * dx, dx * dy)
!
 def mul(self, other):
 numer = self.numer * other.numer
 denom = self.denom * other.denom
 return Rational(numer, denom)

Rational Numbers

class Rational:
 """A rational number represented as a numerator and denominator."""
 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g
!
 def __repr__(self):
 return 'Rational({0}, {1})'.format(self.numer, self.denom)

Greatest common
divisor

5

 def add(self, other):
 nx, dx = self.numer, self.denom
 ny, dy = other.numer, other.denom
 return Rational(nx * dy + ny * dx, dx * dy)
!
 def mul(self, other):
 numer = self.numer * other.numer
 denom = self.denom * other.denom
 return Rational(numer, denom)

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

Rational Numbers

class Rational:
 """A rational number represented as a numerator and denominator."""
 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g
!
 def __repr__(self):
 return 'Rational({0}, {1})'.format(self.numer, self.denom)

Greatest common
divisor

5

 def add(self, other):
 nx, dx = self.numer, self.denom
 ny, dy = other.numer, other.denom
 return Rational(nx * dy + ny * dx, dx * dy)
!
 def mul(self, other):
 numer = self.numer * other.numer
 denom = self.denom * other.denom
 return Rational(numer, denom)

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

Rational Numbers

class Rational:
 """A rational number represented as a numerator and denominator."""
 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g
!
 def __repr__(self):
 return 'Rational({0}, {1})'.format(self.numer, self.denom)

Greatest common
divisor

5

 def add(self, other):
 nx, dx = self.numer, self.denom
 ny, dy = other.numer, other.denom
 return Rational(nx * dy + ny * dx, dx * dy)
!
 def mul(self, other):
 numer = self.numer * other.numer
 denom = self.denom * other.denom
 return Rational(numer, denom)

(Demo)

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

Complex Numbers

6

Complex Numbers

6

class Complex:
 def add(self, other):
 return ComplexRI(self.real + other.real,
 self.imag + other.imag)
 def mul(self, other):
 return ComplexMA(self.magnitude * other.magnitude,
 self.angle + other.angle)

Complex Numbers

class ComplexRI(Complex):
 """A rectangular representation."""
 def __init__(self, real, imag):
 self.real = real
 self.imag = imag
!
 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5
!
 @property
 def angle(self):
 return atan2(self.imag, self.real)

6

class Complex:
 def add(self, other):
 return ComplexRI(self.real + other.real,
 self.imag + other.imag)
 def mul(self, other):
 return ComplexMA(self.magnitude * other.magnitude,
 self.angle + other.angle)

Complex Numbers

class ComplexRI(Complex):
 """A rectangular representation."""
 def __init__(self, real, imag):
 self.real = real
 self.imag = imag
!
 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5
!
 @property
 def angle(self):
 return atan2(self.imag, self.real)

6

class ComplexMA(Complex):
 """A polar representation."""
 def __init__(self, magnitude, angle):
 self.magnitude = magnitude
 self.angle = angle
!
 @property
 def real(self):
 return self.magnitude * cos(self.angle)
!
 @property
 def imag(self):
 return self.magnitude * sin(self.angle)

class Complex:
 def add(self, other):
 return ComplexRI(self.real + other.real,
 self.imag + other.imag)
 def mul(self, other):
 return ComplexMA(self.magnitude * other.magnitude,
 self.angle + other.angle)

Complex Numbers

class ComplexRI(Complex):
 """A rectangular representation."""
 def __init__(self, real, imag):
 self.real = real
 self.imag = imag
!
 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5
!
 @property
 def angle(self):
 return atan2(self.imag, self.real)

6

(Demo)

class ComplexMA(Complex):
 """A polar representation."""
 def __init__(self, magnitude, angle):
 self.magnitude = magnitude
 self.angle = angle
!
 @property
 def real(self):
 return self.magnitude * cos(self.angle)
!
 @property
 def imag(self):
 return self.magnitude * sin(self.angle)

class Complex:
 def add(self, other):
 return ComplexRI(self.real + other.real,
 self.imag + other.imag)
 def mul(self, other):
 return ComplexMA(self.magnitude * other.magnitude,
 self.angle + other.angle)

Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

>>> Rational(3, 14).add(Rational(2, 7))

Rational(1, 2)

Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

>>> Rational(3, 14).add(Rational(2, 7))

Rational(1, 2)

3

14
+

2

7

Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

>>> Rational(3, 14).add(Rational(2, 7))

Rational(1, 2)

>>> ComplexRI(0, 1).mul(ComplexMA(1, 0.5 * pi))

ComplexMA(1, 1 * pi)

3

14
+

2

7

Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

>>> Rational(3, 14).add(Rational(2, 7))

Rational(1, 2)

>>> ComplexRI(0, 1).mul(ComplexMA(1, 0.5 * pi))

ComplexMA(1, 1 * pi)

3

14
+

2

7

i · i

Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

>>> Rational(3, 14).add(Rational(2, 7))

Rational(1, 2)

>>> ComplexRI(0, 1).mul(ComplexMA(1, 0.5 * pi))

ComplexMA(1, 1 * pi)

Shared
interface

3

14
+

2

7

i · i

Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

>>> Rational(3, 14).add(Rational(2, 7))

Rational(1, 2)

>>> ComplexRI(0, 1).mul(ComplexMA(1, 0.5 * pi))

ComplexMA(1, 1 * pi)

>>> Rational(3, 14) + Rational(2, 7)

Rational(1, 2)

Shared
interface

3

14
+

2

7

i · i

Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

>>> Rational(3, 14).add(Rational(2, 7))

Rational(1, 2)

>>> ComplexRI(0, 1).mul(ComplexMA(1, 0.5 * pi))

ComplexMA(1, 1 * pi)

>>> Rational(3, 14) + Rational(2, 7)

Rational(1, 2)

Shared
interface

3

14
+

2

7

i · i

3

14
+

2

7

Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

>>> Rational(3, 14).add(Rational(2, 7))

Rational(1, 2)

>>> ComplexRI(0, 1).mul(ComplexMA(1, 0.5 * pi))

ComplexMA(1, 1 * pi)

>>> Rational(3, 14) + Rational(2, 7)

Rational(1, 2)

>>> ComplexRI(0, 1) * ComplexMA(1, 0.5 * pi)

ComplexMA(1, 1 * pi)

Shared
interface

3

14
+

2

7

i · i

3

14
+

2

7

Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

>>> Rational(3, 14).add(Rational(2, 7))

Rational(1, 2)

>>> ComplexRI(0, 1).mul(ComplexMA(1, 0.5 * pi))

ComplexMA(1, 1 * pi)

>>> Rational(3, 14) + Rational(2, 7)

Rational(1, 2)

>>> ComplexRI(0, 1) * ComplexMA(1, 0.5 * pi)

ComplexMA(1, 1 * pi)

Shared
interface

3

14
+

2

7

i · i

3

14
+

2

7

i · i

Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

>>> Rational(3, 14).add(Rational(2, 7))

Rational(1, 2)

>>> ComplexRI(0, 1).mul(ComplexMA(1, 0.5 * pi))

ComplexMA(1, 1 * pi)

>>> Rational(3, 14) + Rational(2, 7)

Rational(1, 2)

>>> ComplexRI(0, 1) * ComplexMA(1, 0.5 * pi)

ComplexMA(1, 1 * pi)

Shared
interface

Operators

3

14
+

2

7

i · i

3

14
+

2

7

i · i

Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

>>> Rational(3, 14).add(Rational(2, 7))

Rational(1, 2)

>>> ComplexRI(0, 1).mul(ComplexMA(1, 0.5 * pi))

ComplexMA(1, 1 * pi)

>>> Rational(3, 14) + Rational(2, 7)

Rational(1, 2)

>>> ComplexRI(0, 1) * ComplexMA(1, 0.5 * pi)

ComplexMA(1, 1 * pi)

>>> Rational(1, 2) + ComplexRI(0.5, 2)

ComplexRI(1, 2)

Shared
interface

Operators

3

14
+

2

7

i · i

3

14
+

2

7

i · i

Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

>>> Rational(3, 14).add(Rational(2, 7))

Rational(1, 2)

>>> ComplexRI(0, 1).mul(ComplexMA(1, 0.5 * pi))

ComplexMA(1, 1 * pi)

>>> Rational(3, 14) + Rational(2, 7)

Rational(1, 2)

>>> ComplexRI(0, 1) * ComplexMA(1, 0.5 * pi)

ComplexMA(1, 1 * pi)

>>> Rational(1, 2) + ComplexRI(0.5, 2)

ComplexRI(1, 2)

Shared
interface

Operators

3

14
+

2

7

i · i

3

14
+

2

7

i · i

1

2
+ (0.5 + 2 · i)

Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

>>> Rational(3, 14).add(Rational(2, 7))

Rational(1, 2)

>>> ComplexRI(0, 1).mul(ComplexMA(1, 0.5 * pi))

ComplexMA(1, 1 * pi)

>>> Rational(3, 14) + Rational(2, 7)

Rational(1, 2)

>>> ComplexRI(0, 1) * ComplexMA(1, 0.5 * pi)

ComplexMA(1, 1 * pi)

>>> Rational(1, 2) + ComplexRI(0.5, 2)

ComplexRI(1, 2)

>>> ComplexMA(2, 0.5 * pi) * Rational(3, 2)

ComplexMA(3, 0.5 * pi)

Shared
interface

Operators

3

14
+

2

7

i · i

3

14
+

2

7

i · i

1

2
+ (0.5 + 2 · i)

Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

>>> Rational(3, 14).add(Rational(2, 7))

Rational(1, 2)

>>> ComplexRI(0, 1).mul(ComplexMA(1, 0.5 * pi))

ComplexMA(1, 1 * pi)

>>> Rational(3, 14) + Rational(2, 7)

Rational(1, 2)

>>> ComplexRI(0, 1) * ComplexMA(1, 0.5 * pi)

ComplexMA(1, 1 * pi)

>>> Rational(1, 2) + ComplexRI(0.5, 2)

ComplexRI(1, 2)

>>> ComplexMA(2, 0.5 * pi) * Rational(3, 2)

ComplexMA(3, 0.5 * pi)

Shared
interface

Operators

3

14
+

2

7

i · i

3

14
+

2

7

i · i

1

2
+ (0.5 + 2 · i)

2 · i · 3
2

Cross-Type Arithmetic Examples

Currently, we can add rationals to rationals, but not rationals to complex numbers

7

>>> Rational(3, 14).add(Rational(2, 7))

Rational(1, 2)

>>> ComplexRI(0, 1).mul(ComplexMA(1, 0.5 * pi))

ComplexMA(1, 1 * pi)

>>> Rational(3, 14) + Rational(2, 7)

Rational(1, 2)

>>> ComplexRI(0, 1) * ComplexMA(1, 0.5 * pi)

ComplexMA(1, 1 * pi)

>>> Rational(1, 2) + ComplexRI(0.5, 2)

ComplexRI(1, 2)

>>> ComplexMA(2, 0.5 * pi) * Rational(3, 2)

ComplexMA(3, 0.5 * pi)

Shared
interface

Operators

Cross-type
arithmetic

3

14
+

2

7

i · i

3

14
+

2

7

i · i

1

2
+ (0.5 + 2 · i)

2 · i · 3
2

Special Method Names

Special Method Names in Python

9

Special Method Names in Python

9

Certain names are special because they have built-in behavior

Special Method Names in Python

9

Certain names are special because they have built-in behavior

These names always start and end with two underscores

Special Method Names in Python

9

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

Special Method Names in Python

9

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__ Method invoked automatically when an object is constructed

Special Method Names in Python

9

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

Method invoked automatically when an object is constructed

Special Method Names in Python

9

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

Method invoked automatically when an object is constructed

Method invoked to display an object as a string

Special Method Names in Python

9

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

Method invoked automatically when an object is constructed

Method invoked to display an object as a string

Special Method Names in Python

9

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

Method invoked automatically when an object is constructed

Method invoked to display an object as a string

Method invoked to add one object to another

Special Method Names in Python

9

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

Method invoked automatically when an object is constructed

Method invoked to display an object as a string

Method invoked to add one object to another

Special Method Names in Python

9

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

Method invoked automatically when an object is constructed

Method invoked to display an object as a string

Method invoked to add one object to another

Method invoked to convert an object to True or False

Special Method Names in Python

9

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

Method invoked automatically when an object is constructed

Method invoked to display an object as a string

Method invoked to add one object to another

Method invoked to convert an object to True or False

>>> zero, one, two = 0, 1, 2

Special Method Names in Python

9

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

Method invoked automatically when an object is constructed

Method invoked to display an object as a string

Method invoked to add one object to another

Method invoked to convert an object to True or False

>>> zero, one, two = 0, 1, 2
>>> one + two
3

Special Method Names in Python

9

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

Method invoked automatically when an object is constructed

Method invoked to display an object as a string

Method invoked to add one object to another

Method invoked to convert an object to True or False

>>> zero, one, two = 0, 1, 2
>>> one + two
3
>>> bool(zero), bool(one)
(False, True)

Special Method Names in Python

9

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

Method invoked automatically when an object is constructed

Method invoked to display an object as a string

Method invoked to add one object to another

Method invoked to convert an object to True or False

>>> zero, one, two = 0, 1, 2
>>> one + two
3
>>> bool(zero), bool(one)
(False, True)

Same
behavior
using

methods

Special Method Names in Python

9

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

Method invoked automatically when an object is constructed

Method invoked to display an object as a string

Method invoked to add one object to another

Method invoked to convert an object to True or False

>>> zero, one, two = 0, 1, 2
>>> one + two
3
>>> bool(zero), bool(one)
(False, True)

>>> zero, one, two = 0, 1, 2
Same

behavior
using

methods

Special Method Names in Python

9

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

Method invoked automatically when an object is constructed

Method invoked to display an object as a string

Method invoked to add one object to another

Method invoked to convert an object to True or False

>>> zero, one, two = 0, 1, 2
>>> one + two
3
>>> bool(zero), bool(one)
(False, True)

>>> zero, one, two = 0, 1, 2
>>> one.__add__(two)
3

Same
behavior
using

methods

Special Method Names in Python

9

Certain names are special because they have built-in behavior

These names always start and end with two underscores

__init__

__repr__

__add__

__bool__

Method invoked automatically when an object is constructed

Method invoked to display an object as a string

Method invoked to add one object to another

Method invoked to convert an object to True or False

>>> zero, one, two = 0, 1, 2
>>> one + two
3
>>> bool(zero), bool(one)
(False, True)

>>> zero, one, two = 0, 1, 2
>>> one.__add__(two)
3
>>> zero.__bool__(), one.__bool__()
(False, True)

Same
behavior
using

methods

Special Methods

10

Special Methods

Adding instances of user-defined classes invokes the __add__ method

10

Special Methods

Adding instances of user-defined classes invokes the __add__ method

class Number:
 """A number."""
 def __add__(self, other):
 return self.add(other)
!
 def __mul__(self, other):
 return self.mul(other)

10

Special Methods

Adding instances of user-defined classes invokes the __add__ method

class Number:
 """A number."""
 def __add__(self, other):
 return self.add(other)
!
 def __mul__(self, other):
 return self.mul(other)

10

class Rational(Number):
 def add(self, other):
 ...
 def mul(self, other):
 ...

Special Methods

Adding instances of user-defined classes invokes the __add__ method

class Number:
 """A number."""
 def __add__(self, other):
 return self.add(other)
!
 def __mul__(self, other):
 return self.mul(other)

>>> Rational(1, 3) + Rational(1, 6)
Rational(1, 2)

10

class Rational(Number):
 def add(self, other):
 ...
 def mul(self, other):
 ...

Special Methods

Adding instances of user-defined classes invokes the __add__ method

class Number:
 """A number."""
 def __add__(self, other):
 return self.add(other)
!
 def __mul__(self, other):
 return self.mul(other)

>>> Rational(1, 3) + Rational(1, 6)
Rational(1, 2)

10

We can also __add__ complex numbers, even with multiple representations (Demo)

class Complex(Number):
 def add(self, other):
 ...
 def mul(self, other):
 ...

class Rational(Number):
 def add(self, other):
 ...
 def mul(self, other):
 ...

Special Methods

Adding instances of user-defined classes invokes the __add__ method

class Number:
 """A number."""
 def __add__(self, other):
 return self.add(other)
!
 def __mul__(self, other):
 return self.mul(other)

>>> Rational(1, 3) + Rational(1, 6)
Rational(1, 2)

10

We can also __add__ complex numbers, even with multiple representations (Demo)

http://docs.python.org/py3k/reference/datamodel.html#special-method-names

http://getpython3.com/diveintopython3/special-method-names.html

class Complex(Number):
 def add(self, other):
 ...
 def mul(self, other):
 ...

class Rational(Number):
 def add(self, other):
 ...
 def mul(self, other):
 ...

Type Dispatching

The Independence of Data Types

12

The Independence of Data Types

Data abstraction and class definitions keep types separate

12

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need access to the implementation of two different abstractions

12

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need access to the implementation of two different abstractions

How do we add a complex number and
a rational number together?

12

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need access to the implementation of two different abstractions

Rational numbers as
numerators & denominators

How do we add a complex number and
a rational number together?

12

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need access to the implementation of two different abstractions

Rational numbers as
numerators & denominators

Complex numbers as
two-dimensional vectors

How do we add a complex number and
a rational number together?

12

&

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need access to the implementation of two different abstractions

Rational numbers as
numerators & denominators

Complex numbers as
two-dimensional vectors

How do we add a complex number and
a rational number together?

12

&

def add_complex_and_rational(c, r):
 """Return c + r for complex c and rational r."""
 return ComplexRI(c.real + r.numer/r.denom, c.imag)

Type Dispatching

13

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid

13

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid

Rational.type_tag = "rat"
Complex.type_tag = "com"

13

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid

Rational.type_tag = "rat"
Complex.type_tag = "com"

13

Same tag:  
same interface

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid

Rational.type_tag = "rat"
Complex.type_tag = "com"

class Number:

13

Same tag:  
same interface

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid

Rational.type_tag = "rat"
Complex.type_tag = "com"

class Number:
 def __add__(self, other):
 if self.type_tag == other.type_tag:
 return self.add(other)

13

Same tag:  
same interface

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid

Rational.type_tag = "rat"
Complex.type_tag = "com"

class Number:
 def __add__(self, other):
 if self.type_tag == other.type_tag:
 return self.add(other)

13

Same tag:  
same interface

Defer to
add method

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid

Rational.type_tag = "rat"
Complex.type_tag = "com"

class Number:
 def __add__(self, other):
 if self.type_tag == other.type_tag:
 return self.add(other)
 elif (self.type_tag, other.type_tag) in self.adders:
 return self.cross_apply(other, self.adders)

13

Same tag:  
same interface

Defer to
add method

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid

Rational.type_tag = "rat"
Complex.type_tag = "com"

class Number:
 def __add__(self, other):
 if self.type_tag == other.type_tag:
 return self.add(other)
 elif (self.type_tag, other.type_tag) in self.adders:
 return self.cross_apply(other, self.adders)

13

Same tag:  
same interface

Defer to
add method

All forms of
cross-type

addition for self

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid

Rational.type_tag = "rat"
Complex.type_tag = "com"

class Number:
 def __add__(self, other):
 if self.type_tag == other.type_tag:
 return self.add(other)
 elif (self.type_tag, other.type_tag) in self.adders:
 return self.cross_apply(other, self.adders)

13

Same tag:  
same interface

Defer to
add method

All forms of
cross-type

addition for self

 adders = {("com", "rat"): add_complex_and_rational,
 ("rat", "com"): add_rational_and_complex}

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid

Rational.type_tag = "rat"
Complex.type_tag = "com"

class Number:
 def __add__(self, other):
 if self.type_tag == other.type_tag:
 return self.add(other)
 elif (self.type_tag, other.type_tag) in self.adders:
 return self.cross_apply(other, self.adders)

 def cross_apply(self, other, cross_fns):
 cross_fn = cross_fns[(self.type_tag, other.type_tag)]
 return cross_fn(self, other)

13

Same tag:  
same interface

Defer to
add method

All forms of
cross-type

addition for self

 adders = {("com", "rat"): add_complex_and_rational,
 ("rat", "com"): add_rational_and_complex}

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid

Rational.type_tag = "rat"
Complex.type_tag = "com"

class Number:
 def __add__(self, other):
 if self.type_tag == other.type_tag:
 return self.add(other)
 elif (self.type_tag, other.type_tag) in self.adders:
 return self.cross_apply(other, self.adders)

 def cross_apply(self, other, cross_fns):
 cross_fn = cross_fns[(self.type_tag, other.type_tag)]
 return cross_fn(self, other)

13

Same tag:  
same interface

Defer to
add method

All forms of
cross-type

addition for self

 adders = {("com", "rat"): add_complex_and_rational,
 ("rat", "com"): add_rational_and_complex}

(Demo)

Type Dispatching Analysis

Type Dispatching Analysis

15

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary

15

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary

Extensible: Any new numeric type can "install" itself into the existing system by adding
new entries to the cross-type function dictionaries

15

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary

Extensible: Any new numeric type can "install" itself into the existing system by adding
new entries to the cross-type function dictionaries

Number.adders[(tag0, tag1)] = add_tag0_and_tag1

15

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary

Extensible: Any new numeric type can "install" itself into the existing system by adding
new entries to the cross-type function dictionaries

Question: How many cross-type implementations are required for m types and n operations?

Number.adders[(tag0, tag1)] = add_tag0_and_tag1

15

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary

Extensible: Any new numeric type can "install" itself into the existing system by adding
new entries to the cross-type function dictionaries

Question: How many cross-type implementations are required for m types and n operations?

Number.adders[(tag0, tag1)] = add_tag0_and_tag1

15

m2 · n2m2 · nm · nnm

m · (m � 1) · n

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary

Extensible: Any new numeric type can "install" itself into the existing system by adding
new entries to the cross-type function dictionaries

Question: How many cross-type implementations are required for m types and n operations?

Number.adders[(tag0, tag1)] = add_tag0_and_tag1

15

m2 · n2m2 · nm · nnm

Type Dispatching Analysis

16

Minimal violation of abstraction barriers: we define cross-type functions as necessary.

Extensible: Any new numeric type can "install" itself into the existing system by adding
new entries to the cross-type function dictionaries

Type Dispatching Analysis

Arg 1 Arg 2 Add Multiply

Complex Complex

Rational Rational

Complex Rational

Rational Complex

16

Minimal violation of abstraction barriers: we define cross-type functions as necessary.

Extensible: Any new numeric type can "install" itself into the existing system by adding
new entries to the cross-type function dictionaries

Type Coercion

Coercion

18

Coercion

Idea: Some types can be converted into other types

18

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

18

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

def rational_to_complex(r):
 """Return complex equal to rational."""
 return ComplexRI(r.numer/r.denom, 0)

18

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

def rational_to_complex(r):
 """Return complex equal to rational."""
 return ComplexRI(r.numer/r.denom, 0)

Question: Can any numeric type be coerced into any other?

18

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

def rational_to_complex(r):
 """Return complex equal to rational."""
 return ComplexRI(r.numer/r.denom, 0)

Question: Can any numeric type be coerced into any other?

18

Question: Can any two numeric types be coerced into a common type?

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

def rational_to_complex(r):
 """Return complex equal to rational."""
 return ComplexRI(r.numer/r.denom, 0)

Question: Can any numeric type be coerced into any other?

18

Question: Can any two numeric types be coerced into a common type?

Question: Is coercion exact?

Applying Operators with Coercion

19

Applying Operators with Coercion

19

class Number:

Applying Operators with Coercion

19

class Number:
 def __add__(self, other):
 x, y = self.coerce(other)
 return x.add(y)

Applying Operators with Coercion

19

class Number:
 def __add__(self, other):
 x, y = self.coerce(other)
 return x.add(y)

Always defer to
add method

Applying Operators with Coercion

19

class Number:
 def __add__(self, other):
 x, y = self.coerce(other)
 return x.add(y)

 def coerce(self, other):

Always defer to
add method

Applying Operators with Coercion

19

class Number:
 def __add__(self, other):
 x, y = self.coerce(other)
 return x.add(y)

 def coerce(self, other):
 if self.type_tag == other.type_tag:
 return self, other

Always defer to
add method

Applying Operators with Coercion

19

class Number:
 def __add__(self, other):
 x, y = self.coerce(other)
 return x.add(y)

 def coerce(self, other):
 if self.type_tag == other.type_tag:
 return self, other

Always defer to
add method

Same interface:  
no change required

Applying Operators with Coercion

19

class Number:
 def __add__(self, other):
 x, y = self.coerce(other)
 return x.add(y)

 def coerce(self, other):
 if self.type_tag == other.type_tag:
 return self, other
 elif (self.type_tag, other.type_tag) in self.coercions:

Always defer to
add method

Same interface:  
no change required

Applying Operators with Coercion

19

class Number:
 def __add__(self, other):
 x, y = self.coerce(other)
 return x.add(y)

 def coerce(self, other):
 if self.type_tag == other.type_tag:
 return self, other
 elif (self.type_tag, other.type_tag) in self.coercions:

 coercions = {('rat', 'com'): rational_to_complex}

Always defer to
add method

Same interface:  
no change required

Applying Operators with Coercion

19

class Number:
 def __add__(self, other):
 x, y = self.coerce(other)
 return x.add(y)

 def coerce(self, other):
 if self.type_tag == other.type_tag:
 return self, other
 elif (self.type_tag, other.type_tag) in self.coercions:
 return (self.coerce_to(other.type_tag), other)

 coercions = {('rat', 'com'): rational_to_complex}

Always defer to
add method

Same interface:  
no change required

Applying Operators with Coercion

19

class Number:
 def __add__(self, other):
 x, y = self.coerce(other)
 return x.add(y)

 def coerce(self, other):
 if self.type_tag == other.type_tag:
 return self, other
 elif (self.type_tag, other.type_tag) in self.coercions:
 return (self.coerce_to(other.type_tag), other)

 coercions = {('rat', 'com'): rational_to_complex}

Always defer to
add method

Same interface:  
no change required

 def coerce_to(self, other_tag):
 coercion_fn = self.coercions[(self.type_tag, other_tag)]
 return coercion_fn(self)

Applying Operators with Coercion

19

class Number:
 def __add__(self, other):
 x, y = self.coerce(other)
 return x.add(y)

 def coerce(self, other):
 if self.type_tag == other.type_tag:
 return self, other
 elif (self.type_tag, other.type_tag) in self.coercions:
 return (self.coerce_to(other.type_tag), other)
 elif (other.type_tag, self.type_tag) in self.coercions:
 return (self, other.coerce_to(self.type_tag))

 coercions = {('rat', 'com'): rational_to_complex}

Always defer to
add method

Same interface:  
no change required

 def coerce_to(self, other_tag):
 coercion_fn = self.coercions[(self.type_tag, other_tag)]
 return coercion_fn(self)

Applying Operators with Coercion

(Demo)

19

class Number:
 def __add__(self, other):
 x, y = self.coerce(other)
 return x.add(y)

 def coerce(self, other):
 if self.type_tag == other.type_tag:
 return self, other
 elif (self.type_tag, other.type_tag) in self.coercions:
 return (self.coerce_to(other.type_tag), other)
 elif (other.type_tag, self.type_tag) in self.coercions:
 return (self, other.coerce_to(self.type_tag))

 coercions = {('rat', 'com'): rational_to_complex}

Always defer to
add method

Same interface:  
no change required

 def coerce_to(self, other_tag):
 coercion_fn = self.coercions[(self.type_tag, other_tag)]
 return coercion_fn(self)

Coercion Analysis

20

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type coercion as necessary

20

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type coercion as necessary

Requires that all types can be coerced into a common type

20

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type coercion as necessary

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

20

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type coercion as necessary

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

Arg 1 Arg 2 Add Multiply
Complex Complex
Rational Rational
Complex Rational
Rational Complex

20

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type coercion as necessary

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

Arg 1 Arg 2 Add Multiply
Complex Complex
Rational Rational
Complex Rational
Rational Complex

From To Coerce
Complex Rational

Rational Complex

20

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type coercion as necessary

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

Arg 1 Arg 2 Add Multiply
Complex Complex
Rational Rational
Complex Rational
Rational Complex

From To Coerce
Complex Rational

Rational Complex

Type Add Multiply
Complex

Rational

20

