
61A Lecture 36

Monday, April 27

Announcements

• Recursive Art Contest Entries due Monday 4/27 @ 11:59pm

§Email your code & a screenshot of your art to cs61a-tae@imail.eecs.berkeley.edu (Albert)

• Homework 9 (4 pts) due Wednesday 4/29 @ 11:59pm

§Homework Party Tuesday 5pm-6:30pm on Tuesday 4/28 in 2050 VLSB

§Go to lab next week for help on the SQL homework! (There's also a lab.)

• Quiz 4 (SQL) released on Tuesday 4/28 is due Thursday 4/30 @ 11:59pm

2

Unix

Computer Systems

Systems research enables the development of applications by defining and implementing
abstractions:

• Operating systems provide a stable, consistent interface to unreliable, inconsistent
hardware

• Networks provide a robust data transfer interface to constantly evolving communications
infrastructure

• Databases provide a declarative interface to software that stores and retrieves information
efficiently

• Distributed systems provide a unified interface to a cluster of multiple machines

A unifying property of effective systems:

4

Hide complexity, but retain flexibility

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

The standard streams in a Unix-like operating system are similar to Python iterators.

5

standard input
standard output

process

standard error

Text input
Text output

(Demo)

ls hw* | grep -v html | cut -f 1 -d '.' | cut -c 3- | sort -n

Python Programs in a Unix Environment

The built-in input function reads a line from standard input

The built-in print function writes a line to standard output

(Demo)

(Demo)

6

The sys.stdin and sys.stdout values provide access to the Unix standard streams as files

A Python file has an interface that supports iteration, read, and write methods

Using these "files" takes advantage of the operating system text processing abstraction

MapReduce

Big Data Processing

MapReduce is a framework for batch processing of big data.

• Framework: A system used by programmers to build applications

• Batch processing: All the data is available at the outset, and results aren't used until
processing completes

• Big data: Used to describe data sets so large and comprehensive that they can reveal facts
about a whole population, usually from statistical analysis

The MapReduce idea:

• Data sets are too big to be analyzed by one machine

• Using multiple machines has the same complications, regardless of the application/analysis

• Pure functions enable an abstraction barrier between data processing logic and coordinating
a distributed application

8

(Demo)

http://www.google.com/trends/explore

MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

• The mapper takes an iterable value containing inputs, such as lines of text

• The mapper yields zero or more key-value pairs for each input

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key

• The reducer takes an iterable value containing intermediate key-value pairs

• All pairs with the same key appear consecutively

• The reducer yields zero or more values, each associated with that intermediate key

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

9

reducer
e: 5

reducer
a: 6

MapReduce Evaluation Model

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

i: 2

o: 5

u: 1

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key

• The reducer takes an iterable value containing intermediate key-value pairs

• All pairs with the same key appear consecutively

• The reducer yields zero or more values, each associated with that intermediate key

10

MapReduce Execution Model

Execution Model

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0007.html
12

Parallel Execution Implementation

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0008.html

A "task" is a Unix
process running on a

machine

Map phase
Reduce phase

Shuffle

13

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently

• The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key

Benefits of functional programming:

• When a program contains only pure functions, call expressions can be
evaluated in any order, lazily, and in parallel

• Referential transparency: a call expression can be replaced by its value
(or vis versa) without changing the program

In MapReduce, these functional programming ideas allow:

• Consistent results, however computation is partitioned

• Re-computation and caching of results, as needed

14

Map phase
Reduce phase

Shuffle

MapReduce Applications

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

#!/usr/bin/env python3
!
import sys
from mr import emit

for line in sys.stdin:
 emit_vowels(line)

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

The emit function outputs a key
and value as a line of text to

standard output

Mapper inputs are lines of text
provided to standard input

Tell Unix: This is Python 3 code

16

(Demo)

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

#!/usr/bin/env python3
!
import sys
from mr import emit, values_by_key

Reducer

for key, value_iterator in values_by_key(sys.stdin):
 emit(key, sum(value_iterator))

Takes and returns iterators

Input: lines of text representing key-value pairs, grouped by key
Output: Iterator over (key, value_iterator) pairs that give all

values for each key

17

(Demo)

MapReduce Benefits

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash

• The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

• The framework can run multiple copies of a task and keep the result of the one that
finishes first

Network locality: Data transfer is expensive

• The framework tries to schedule map tasks on the machines that hold the data to be
processed

Monitoring: Will my job finish before dinner?!?

• The framework provides a web-based interface describing jobs

(Demo)

19

