61A Extra Lecture 1

Thursday, January 29
Announcements

• If you want 1 unit (pass/no pass) of credit for this CS 98, you need to:
Announcements

If you want 1 unit (pass/no pass) of credit for this CS 98, you need to:

- Enroll in "Additional Topics on the Structure and Interpretation of Computer Programs"
Announcements

• If you want 1 unit (pass/no pass) of credit for this CS 98, you need to:
 ▪ Enroll in "Additional Topics on the Structure and Interpretation of Computer Programs"
 ▪ Course control number: 25709
Announcements

- If you want 1 unit (pass/no pass) of credit for this CS 98, you need to:
 - Enroll in "Additional Topics on the Structure and Interpretation of Computer Programs"
 - Course control number: 25709
 - Concurrently enroll in CS 61A
Announcements

• If you want 1 unit (pass/no pass) of credit for this CS 98, you need to:
 • Enroll in "Additional Topics on the Structure and Interpretation of Computer Programs"
 • Course control number: 25709
 • Concurrently enroll in CS 61A
 • Complete ~6 difficult assignments, which may be released/due at strange times
Announcements

• If you want 1 unit (pass/no pass) of credit for this CS 98, you need to:
 ▪ Enroll in "Additional Topics on the Structure and Interpretation of Computer Programs"
 ▪ Course control number: 25709
 ▪ Concurrently enroll in CS 61A
 ▪ Complete ~6 difficult assignments, which may be released/due at strange times
 ▪ Only for people who really want extra work that's beyond the scope of normal CS 61A
Announcements

• If you want 1 unit (pass/no pass) of credit for this CS 98, you need to:
 ▪ Enroll in "Additional Topics on the Structure and Interpretation of Computer Programs"
 ▪ Course control number: 25709
 ▪ Concurrently enroll in CS 61A
 ▪ Complete ~6 difficult assignments, which may be released/due at strange times
 ▪ Only for people who really want extra work that's beyond the scope of normal CS 61A
• Anyone is welcome to attend the extra lectures, whether or not they enroll
Announcements

• If you want 1 unit (pass/no pass) of credit for this CS 98, you need to:
 ▪ Enroll in "Additional Topics on the Structure and Interpretation of Computer Programs"
 ▪ Course control number: 25709
 ▪ Concurrently enroll in CS 61A
 ▪ Complete ~6 difficult assignments, which may be released/due at strange times
 ▪ Only for people who really want extra work that's beyond the scope of normal CS 61A
• Anyone is welcome to attend the extra lectures, whether or not they enroll
• Lectures will be on Thursdays 5–6:30 PM in 2050 VLSB; A schedule will be posted eventually
Announcements

- If you want 1 unit (pass/no pass) of credit for this CS 98, you need to:
 - Enroll in "Additional Topics on the Structure and Interpretation of Computer Programs"
 - Course control number: 25709
 - Concurrently enroll in CS 61A
 - Complete ~6 difficult assignments, which may be released/due at strange times
 - Only for people who really want extra work that's beyond the scope of normal CS 61A
- Anyone is welcome to attend the extra lectures, whether or not they enroll
- Lectures will be on Thursdays 5–6:30 PM in 2050 VLSB; A schedule will be posted eventually
- John's office hours: 10am–12pm Wednesday & Friday by appt. (denero.org/meet) in 781 Soda
Lambda Expressions

(Demo)
Lambda Expressions
Lambda Expressions

```python
>>> x = 10
```
Lambda Expressions

```python
>>> x = 10

>>> square = x * x
```

4
Lambda Expressions

>>> x = 10

An expression: this one evaluates to a number

>>> square = x * x
Lambda Expressions

```python
>>> x = 10

>>> square = lambda x: x * x

>>> square = x * x
```

An expression: this one evaluates to a number
Lambda Expressions

```python
>>> x = 10
An expression: this one evaluates to a number

>>> square = x * x
Also an expression: evaluates to a function

>>> square = lambda x: x * x
```

An expression: this one evaluates to a number

Also an expression: evaluates to a function
Lambda Expressions

>>> x = 10
An expression: this one evaluates to a number

>>> square = x * x
Also an expression: evaluates to a function

>>> square = lambda x: x * x
A function
Lambda Expressions

```python
>>> x = 10
>>> square = x * x
```

An expression: this one evaluates to a number

```python
>>> square = lambda x: x * x
```

Also an expression: evaluates to a function

```python
>>> square = lambda x: x * x
```

A function with formal parameter x
Lambda Expressions

```python
>>> x = 10

An expression: this one evaluates to a number

>>> square = x * x

Also an expression: evaluates to a function

>>> square = lambda x: x * x

A function

with formal parameter x

that returns the value of "x * x"
```
Lambda Expressions

```python
>>> x = 10
An expression: this one evaluates to a number

>>> square = x * x
Also an expression: evaluates to a function

>>> square = lambda x: x * x
A function
    with formal parameter x
    that returns the value of "x * x"
```

Important: No "return" keyword!
Lambda Expressions

```python
>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x
```

An expression: this one evaluates to a number

Also an expression: evaluates to a function

A function with formal parameter x that returns the value of "x * x"

Important: No "return" keyword!

Must be a single expression
Lambda Expressions

```python
>>> x = 10
An expression: this one evaluates to a number

>>> square = x * x
Also an expression: evaluates to a function

>>> square = lambda x: x * x
Important: No "return" keyword!
A function with formal parameter x
that returns the value of "x * x"

>>> square(4)
16
Must be a single expression
```
Lambda Expressions

```python
>>> x = 10
An expression: this one evaluates to a number

>>> square = x * x
Also an expression: evaluates to a function

>>> square = lambda x: x * x
Important: No "return" keyword!

A function
with formal parameter x
that returns the value of "x * x"

>>> square(4)
16
Must be a single expression
```

Lambda expressions are not common in Python, but important in general
Lambda Expressions

>>> x = 10

An expression: this one evaluates to a number

>>> square = x * x

Also an expression: evaluates to a function

>>> square = lambda x: x * x

A function with formal parameter x that returns the value of "x * x"

>>> square(4)
16

Important: No "return" keyword!

Must be a single expression

Lambda expressions are not common in Python, but important in general

Lambda expressions in Python cannot contain statements at all!
Newton's Method
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

\[
f(x) = x^2 - 2
\]
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

\[f(x) = x^2 - 2 \]
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

\[f(x) = x^2 - 2 \]

A "zero" of a function \(f \) is an input \(x \) such that \(f(x) = 0 \).
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

\[f(x) = x^2 - 2 \]

A "zero" of a function \(f \) is an input \(x \) such that \(f(x) = 0 \)

\[x = 1.414213562373095 \]
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

\[f(x) = x^2 - 2 \]

A "zero" of a function \(f \) is an input \(x \) such that \(f(x) = 0 \)

Application: a method for computing square roots, cube roots, etc.
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

A "zero" of a function f is an input x such that $f(x)=0$.

Application: a method for computing square roots, cube roots, etc.

The positive zero of $f(x) = x^2 - a$ is \sqrt{a}. (We're solving the equation $x^2 = a$.)
Newton's Method

Given a function f and initial guess x,
Newton's Method

Given a function \(f \) and initial guess \(x \),

Repeatedly improve \(x \):
Newton's Method

Given a function f and initial guess x, repeatedly improve x:
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: $f(x)$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

- Compute the value of f at the guess: $f(x)$
- Compute the derivative of f at the guess: $f'(x)$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $f'(x)$

Update guess x to be:

$$x = x - \frac{f(x)}{f'(x)}$$
Newton's Method

Given a function f and initial guess x, repeatedly improve x:

- Compute the value of f at the guess: $f(x)$
- Compute the derivative of f at the guess: $f'(x)$
- Update guess x to be:
 $$x - \frac{f(x)}{f'(x)}$$
Newton's Method

Given a function f and initial guess x, repeatedly improve x:

- Compute the value of f at the guess: $f(x)$
- Compute the derivative of f at the guess: $f'(x)$
- Update guess x to be:

 $$x - \frac{f(x)}{f'(x)}$$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $f'(x)$

Update guess x to be:

$$x = \frac{f(x)}{f'(x)}$$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

1. Compute the value of f at the guess: $f(x)$
2. Compute the derivative of f at the guess: $f'(x)$
3. Update guess x to be:
 $$x - \frac{f(x)}{f'(x)}$$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $f'(x)$

Update guess x to be:

$$x - \frac{f(x)}{f'(x)}$$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

1. Compute the value of f at the guess: $f(x)$
2. Compute the derivative of f at the guess: $f'(x)$
3. Update guess x to be:
 $$x = x - \frac{f(x)}{f'(x)}$$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

- Compute the value of f at the guess: $f(x)$
- Compute the derivative of f at the guess: $f'(x)$
- Update guess x to be:
 $$x = \frac{-f(x)}{f'(x)}$$

Finish when $f(x) = 0$ (or close enough)
Newton's Method

Given a function f and initial guess x, repeatedly improve x:

1. Compute the value of f at the guess: $f(x)$
2. Compute the derivative of f at the guess: $f'(x)$
3. Update guess x to be:
 $$ x = f(x) - \frac{f(x)}{f'(x)} $$

Finish when $f(x) = 0$ (or close enough)

Using Newton's Method
Using Newton's Method

How to find the square root of 2?
Using Newton's Method

How to find the square root of 2?

```python
>>> f = lambda x: x**2 - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```
Using Newton's Method

How to find the square root of 2?

```python
>>> f = lambda x: x**2 - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```
Using Newton's Method

How to find the square root of 2?

```python
>>> f = lambda x: x**2 - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```

\[f(x) = x^2 - 2 \]
\[f'(x) = 2x \]
Using Newton's Method

How to find the square root of 2?

\[
\begin{align*}
\sqrt{2} & \quad \text{1} \\
\end{align*}
\]

\[
\begin{align*}
>> f & = \lambda x: x^2 - 2 \\
>> df & = \lambda x: 2x \\
>> \text{find_zero}(f, df) \\
& 1.4142135623730951
\end{align*}
\]

\[
\text{f(x)} = x^2 - 2 \\
\text{f'(x)} = 2x
\]

Applies Newton's method
Using Newton's Method

How to find the square root of 2?

\[
\sqrt{2} \quad 1
\]

\[
\begin{align*}
\text{f}(x) &= x^2 - 2 \\
\text{f}'(x) &= 2x
\end{align*}
\]

\[
\text{f(x) = x}^2 - 2 \\
\text{f'(x) = 2x}
\]

\[
\text{Applies Newton's method}
\]

\[
\text{find_zero(f, df)}
\]

1.4142135623730951

How to find the cube root of 729?
Using Newton's Method

How to find the square root of 2?

```python
>>> f = lambda x: x**2 - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```

How to find the cube root of 729?

```python
Applies Newton's method
```
Using Newton's Method

How to find the square root of 2?

```python
>>> f = lambda x: x**2 - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```

How to find the cube root of 729?

```python
>>> g = lambda x: x**3 - 729
>>> dg = lambda x: 3*x**2
>>> find_zero(g, dg)
9.0
```
Using Newton's Method

How to find the square root of 2?

\[f(x) = x^2 - 2 \]
\[f'(x) = 2x \]

```python
>>> f = lambda x: x**2 - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```

How to find the cube root of 729?

\[g(x) = x^3 - 729 \]
\[g'(x) = 3x^2 \]

```python
>>> g = lambda x: x**3 - 729
>>> dg = lambda x: 3*x**2
>>> find_zero(g, dg)
9.0
```
Iterative Improvement
Special Case: Square Roots
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update:
How to compute $\text{square_root}(a)$

Idea: Iteratively refine a guess x about the square root of a

Update:

$$x = \frac{x + \frac{a}{x}}{2}$$
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update: \[x = \frac{x + \frac{a}{x}}{2} \]

Babylonian Method
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess \(x \) about the square root of \(a \)

\[
X = \frac{X + \frac{a}{X}}{2}
\]

(babylonian method)
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess \(x \) about the square root of \(a \)

\[
\text{Update: } \quad x = \frac{x + \frac{a}{x}}{2}
\]

Implementation questions:
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update: $x = \frac{x + \frac{a}{x}}{2}$

Implementation questions:

What guess should start the computation?
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

\[x = \frac{x + \frac{a}{x}}{2} \]

Implementation questions:

- What guess should start the computation?
- How do we know when we are finished?
Special Case: Cube Roots
Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a
Special Case: Cube Roots

How to compute $\text{cube_root}(a)$

Idea: Iteratively refine a guess x about the cube root of a

Update:
Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Update:

$$x = \frac{2 \cdot x + \frac{a}{x^2}}{3}$$
Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

$$x = \frac{2 \cdot x + \frac{a}{x^2}}{3}$$ (Demo)
Special Case: Cube Roots

How to compute `cube_root(a)`

Idea: Iteratively refine a guess x about the cube root of a

\[
\text{Update: } x = \frac{2 \cdot x + \frac{a}{x^2}}{3} \quad \text{(Demo)}
\]

Implementation questions:
Special Case: Cube Roots

How to compute \(\text{cube_root}(a) \)

Idea: Iteratively refine a guess \(x \) about the cube root of \(a \)

\[x = \frac{2 \cdot x + \frac{a}{x^2}}{3} \]

(Demo)

Implementation questions:

What guess should start the computation?
Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

\[
\text{Update:} \quad x = \frac{2 \cdot x + \frac{a}{x^2}}{3}
\]

Implementation questions:

- What guess should start the computation?
- How do we know when we are finished?
Implementing Newton's Method

(Demo)
Approximate Differentiation
Approximate Differentiation
Approximate Differentiation

Differentiation can be performed symbolically or numerically.
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]

\[f'(x) = 2x \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]

\[f'(x) = 2x \]

\[f'(2) = 4 \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]
\[f'(x) = 2x \]
\[f'(2) = 4 \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]

\[f'(x) = 2x \]

\[f'(2) = 4 \]

\[f'(x) = \lim_{a \to 0} \frac{f(x + a) - f(x)}{a} \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]

\[f'(x) = 2x \]

\[f'(2) = 4 \]

\[f'(x) = \lim_{a \to 0} \frac{f(x + a) - f(x)}{a} \]

\[f'(x) \approx \frac{f(x + a) - f(x)}{a} \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]
\[f'(x) = 2x \]
\[f'(2) = 4 \]

\[f'(x) = \lim_{a \to 0} \frac{f(x + a) - f(x)}{a} \]

\[f'(x) \approx \frac{f(x + a) - f(x)}{a} \quad \text{(if } a \text{ is small)} \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically.

\[f(x) = x^2 - 16 \]
\[f'(x) = 2x \]
\[f'(2) = 4 \]

\[f'(x) = \lim_{a \to 0} \frac{f(x + a) - f(x)}{a} \]

\[f'(x) \approx \frac{f(x + a) - f(x)}{a} \quad (\text{if } a \text{ is small}) \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]

\[f'(x) = 2x \]

\[f'(2) = 4 \]

\[f'(x) = \lim_{a \to 0} \frac{f(x + a) - f(x)}{a} \]

\[f'(x) \approx \frac{f(x + a) - f(x)}{a} \quad \text{(if } a \text{ is small)} \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]

\[f'(x) = 2x \]

\[f'(2) = 4 \]

\[f'(x) \approx \lim_{a \to 0} \frac{f(x + a) - f(x)}{a} \quad \text{(if } a \text{ is small)} \]

(Demo)
Critical Points and Inverses
Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is 0.
Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is 0
Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is 0.

\[
\text{derive} = \lambda f: \lambda x: \text{slope}(f, x)
\]

http://upload.wikimedia.org/wikipedia/commons/f/fd/Stationary_vs_inflection_pts.svg
Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is 0

\[
\text{derive} = \lambda f: \lambda x: \text{slope}(f, x)
\]

The inverse \(f^{-1}(y) \) of a differentiable, one-to-one function computes the value \(x \) such that \(f(x) = y \)
Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is 0

\[
\text{derive} = \lambda f: \lambda x: \text{slope}(f, x)
\]

The inverse \(f^{-1}(y) \) of a differentiable, one-to-one function computes the value \(x \) such that \(f(x) = y \)

(Demo)