
CS 61A Structure and Interpretation of Computer Programs

Spring 2016 Final Examination Solutions (with corrections)

INSTRUCTIONS

• This exam should have 19 pages. You have 3 hours to complete the exam.

• The exam is open book, open notes, closed computer, closed calculator. The official CS 61A midterm 1, 2,
and final study guides will be provided.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

BearFacts email (@berkeley.edu)

If you took the HKN survey, your code.

Room in which you are taking this
exam

TA

Name of the person to your left

Name of the person to your right

I pledge my honor that during this

examination I have neither given

nor received assistance. (please
sign)

2

Reference. Some questions make use of the following class definitions from labs and homework. There is one
difference: we have changed the definition of Link.empty so that it is a kind of Link instead of the empty tuple.

class Link:

def __init__(self, first, rest=None):

When called as Link(x), resets rest to empty

if rest is None:

rest = Link.empty

self.first = first

self.rest = rest

def __repr__(self): ... # (Not shown)

class EmptyLink(Link):

def __init__(self):

pass

Link.empty = EmptyLink() # This makes Link.empty a special kind of Link

class Tree:

def __init__(self, label, children=()):

self.label = label

self.children = list(children)

def is_leaf(self):

return not self.children

def __repr__(self): ... # (Not shown)

class BinTree:

empty = ()

def __init__(self, label, left=empty, right=empty):

self.label = label

self.left = left

self.right = right

class Stream:

class empty:

pass

empty = empty()

def __init__(self, first, compute_rest=lambda: Stream.empty):

self.first, self._compute_rest = first, compute_rest

@property

def rest(self):

if self._compute_rest is not None:

self._rest, self._compute_rest = self._compute_rest(), None

return self._rest

Name: 3

1. (8 points) Silence of the Lambdas

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”. If
an expression yields (or prints) a function, write “<Function>”. The first two rows have been provided as
examples.

Important: The statements in the table are cumulative—assume that all preceding statements in the table
have been executed before each entry.

Assume that python3 has executed the statements on the left initially:

foster = 1

def f(foster):

hopkins = foster+1

def g(glenn):

nonlocal foster

foster = glenn

hopkins = 2*glenn

return (g, lambda: [foster, hopkins])

Expression Interactive Output

pow(2, 3) 8

print(4, 5) + 1
4 5

Error

levine, demme = f(5)

foster
1

demme <Function>

tally = demme()

tally[0]
5

tally[1] 6

print(levine(9)) None

foster 1

tally = demme()

tally[0]
9

tally[1] 6

4

2. (8 points) Point(er) of Order

(a) (3 pt) Fill in code on the left that, when executed, yields the situation on the right. Assume that the objects
are Python lists. Single boxes with labels to their left denote variables, not list objects.

P = [[1, 2, None], [3, 4, None], None]

P[0][2] = P

P[1][2] = P[0]

P[2] = P[1]

P:

1 2 3 4

(b) (1 pt) Why can’t the structure depicted in the diagram for part (a) be built from Python tuples, no matter
what program is used on the left? Give a brief answer in a few sentences.

The contents of the items in a tuple have to be constructed before the tuple itself. Once created, a tuple cannot
be changed. Since P cannot be created before P[0], P[0][2] cannot be set to its final value when P[0] is
constructed, and must therefore be set later, which is impossible.

(c) (4 pt) In the diagram below, the two-slot objects are Links (see page 2). There are N of these Link objects
altogether, with each .first field pointing to the second Link following it (except for the last two, whose
.first fields are Link.empty.) Fill in the blanks to produce such a list (for any non-negative value of N.)

r: · · ·

· · ·

· · ·

· · ·

r = Link.empty

p = Link.empty

while N > 0:

t = Link(p, r)

p, r, N = r, t, N-1

Name: 5

3. (8 points) Environmentally Sound

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program is
finished. Fill in the function values (func ...[parent=...]) with all function values created during execution.
As you can see from the numbering, some environment frames are not shown. Include only the environment
frames for the functions indicated in the frames shown.

1

2

3

4

5

6

7

8

9

10

11

def g(x):

def h():

return lambda: x

def f(x):

return g(h)

if x == 1:

return f(5)

else :

return x

p = g(1)()

x = p()

Global frame

g

p

x 1

func g(x) [parent=Global]

func h() [parent=f1]

func f(x) [parent=f1]

func h() [parent=f3]

func f(x) [parent=f3]

λ () <line 3 > [parent=f4]

f1: g [parent=Global]

x 1

f

h

Return value

f3: g [parent=Global]

x

f

h

Return value

f4: h [parent=f1]

Return value

6

(b) (3 pt)

The diagram on the right below shows part of an environment diagram; various items are left blank, and various
arrows are not shown. Fill in the blanks in the program on the left so as to create a situation consistent with
the diagram on the right (you do not have to fill in any of the blanks in the environment diagram.) Assume
that any variable or function is assigned or defined exactly once. Assume also that function values that start
with func in the diagram are defined with def.

1 def f():

2 def h():

3 pass

4 def p():

5 return lambda: lambda: h

6 return p()

7 q = f()

8 x = q()

Global frame

f

q

x

f1: [parent=]

Return value

f2: [parent=f1]

Return value

f3: [parent=f2]

Return value

func f() [parent= Global]

func [parent= f1]

func [parent= f1]

λ () <line ?> [parent= f2]

λ () <line ?> [parent= f3]

Name: 7

4. (10 points) Tiptoe through the Links

During the semester, we defined a __getitem__ method for the Link class. With a little revision, it allows us
to use Python iteration:

def __getitem__(self, k):

if self is Link.empty:

raise IndexError

elif k == 0:

return self.first

else:

return self.rest[k-1]

(Here, we are making use of the definition of Link.empty on page 2, so that it works on empty lists.) If
this definition is added to Link, Links become iterable: the Python iter function (used by for, and other
constructs that deal with iterables) is able to create an iterator whose __next__ method calls __getitem__

with k set to 0, 1, 2, . . . , until IndexError is raised.

(a) (1 pt) Assuming that Link.__getitem__ is defined as shown, what is the execution time of

for i in L:

print(i)

if L is a Link that heads a linked list of length N?

A. Θ(1)

B. Θ(logN)

C. Θ(
√
N)

D. Θ(N)

E. Θ(N2)

F. Θ(2N)

Problem continues on next page.

8

(b) (5 pt) Suppose that instead of defining Link.__getitem__, we instead want to define Link.__iter__ to
return some kind of iterator whose __next__ method runs in constant time (so it won’t work to count from
the beginning of the list each time). Fill in the definition of ListIter (whose instances are intended to be
iterators over linked lists) and Link.__iter__ to make Link an iterable class whose iterators take constant
time to perform a __next__ operation. Warning: The Link class in this exam does not include __len__, so
the len function does not work.

class ListIter:

def __init__(self , lst):

self.lst = lst

def __next__(self):

if self is Link.empty:

raise StopIteration

r = self.lst.first

self.lst = self.lst.rest

return r

class Link:

...

def __iter__(self):

return ListIter(self)

(c) (1 pt) For the revised Link class from part (b), what is the execution time of

for i in L:

print(i)

if L is a Link that heads a linked list of length N? (Assume your solution in (b) works as specified, regardless
of what you wrote).

A. Θ(1)

B. Θ(logN)

C. Θ(
√
N)

D. Θ(N)

E. Θ(N2)

F. Θ(2N)

Name: 9

(d) (3 pt) Now re-implement __iter__ from part (b) so that instead of using a separate iterator class, it creates
a generator (so that from the user’s point of view, execution of for i in L does not change). (Not all lines
need be used.)

class Link:

...

def __iter__(self):

L = self

while L is not Link.empty:

yield L.first

L = L.rest

10

5. (12 points) Triangular!

In a (lower) triangular array (which we represent as a Python list of lists), row r has length r + 1, like this:

tri1 = [# Boxed items give maximum sum

[1],

[2, 1],

[-2, -1, 1],

[3, 3, 1, 1]

]

Suppose that we choose one item from each row of this triangle in such a way that if we choose item #k in row
#r, we choose either item #k or #k + 1 from row #r + 1. Assuming our arrays contain integers, you are to
write a program to find the maximum sum of a proper choice of selected items from all rows.

In the example above, we can maximize our sum by choosing the boxed items: item 0 from row 0, item 0 from
row 1, item 1 from row 2, and item 1 from row 3 (summing to 5). Choosing instead to take the last item (1)
of the first three rows would only give us a sum of 4, since we could not then choose either of the 3’s from the
last row.

(a) (5 pt) Fill in the blanks in the following recursive program to find the maximum sum:

def triangle_sum(tri):

"""Given that tri is a triangular array , return the maximum

sum attainable by selecting one item from each row , where if

item #k is selected from row #r, either item #k or item #k+1 is

selected from row #r+1."""

rows = len(tri)

def partial_sum(r, k):

"""The maximum partial sum of items from rows #R, R+1, ...

starting from selecting item #K in row #R."""

if r >= rows:

return 0

else:

return tri[r][k] + max(partial_sum(r+1, k), partial_sum(r+1, k+1))

return partial_sum(0, 0)

(b) (1 pt) As a function of the number of rows, R, of the input triangle, what is the running time of this program?

A. Θ(R)

B. Θ(R2)

C. Θ(
√
R)

D. Θ(logR)

E. Θ(2R)

Name: 11

(c) (5 pt) The program may be sped up by noticing that

• When the inner function gets called with the same arguments multiple times, it always returns the same
value.

• The values of the inner function when called on a given row depend only on the values of the function on
the row below it.

Use these observations to create a faster, iterative version of the program.

def triangle_sum(tri):

"""Given that tri is a triangular array , return the maximum

sum attainable by selecting one item from each row , where if

item k is selected from row r, either item k or item k+1 is

selected from row r+1."""

Create a deep copy of tri to avoid destroying the input data.

tri = [list(row) for row in tri]

rows = len(tri)

r = rows - 2

while r >= 0:

for k in range(len(tri[r])):

tri[r][k] += max(tri[r+1][k], tri[r+1][k+1])

r -= 1

return tri[0][0]

(d) (1 pt) As a function of the number of rows, R, of the input triangle, what is the running time of this program?

A. Θ(R)

B. Θ(R2)

C. Θ(
√
R)

D. Θ(logR)

E. Θ(2R)

12

6. (8 points) Six Degrees of Separation

You’ve probably heard that we are all within “six degrees of separation.” That is, either we are friends (one
degree), friends of friends (two degrees), friends of friends of friends (three degrees), etc. up to six degrees.
We may, of course, be separated by several different distances, as when our friend is also a friend of a friend.
Although there are obviously many different paths leading from you back to yourself, however, we won’t consider
you as being connected with yourself.

Suppose that friends is an SQL table with two columns, F1 and F2, where in each row, F1 and F2 are the
names of two friends—i.e., two people with one degree of separation between them. To make life easier, we’ll
assume that if (Peter, Paul) is in the table, then so is (Paul, Peter). We would like an SQL query that produces
a two-column table named linked of people separated (by some chain of friends) by N or fewer degrees of
separation, where N is some integer. In your solution, use ‘N’ as if it is an integer literal, like 6. (The idea of
using ‘N’ instead of a specific number is to force your solution to be general.) Each pair in the resulting table
should appear exactly once, with the name in the first column being first in alphabetical order.

For example, suppose that N = 2, then given the friends table on the left, we should get the linked table
on the right, in some order. (The column names don’t matter for linked, and so are not shown.)

friends
F1 F2

Peter Paul
Jack Paul
Rose Jack
Paul Sam
Cindy Rose
Paul Peter
Paul Jack
Jack Rose
Sam Paul
Rose Cindy

linked
Cindy Rose
Cindy Jack
Jack Paul
Jack Rose
Jack Peter
Jack Sam
Paul Peter
Paul Sam
Paul Rose
Peter Sam

create table linked as

with sep(S1, S2 , degrees) as (

select F1 , F2 , 1 from friends union

select F1 , S2 , degrees + 1 from friends , sep

where degrees < N and F2 = S1

)

select distinct S1, S2 from sep where S1 < S2;

Name: 13

7. (4 points) Tail Recursing the Dog

Fill in the Scheme iota function so that (iota n) produces a list of the numbers from 1 to n (empty if n is
not positive). The resulting add-iota function must be tail-recursive.

scm> (iota 5)

(1 2 3 4 5)

scm> (iota 0)

()

scm> (iota -5)

()

(define (iota n)

(define (add -iota lst m)

(if (< m 1)

lst

(add -iota (cons m lst) (- m 1))))

(add -iota ’() n))

8. (1 points) Sum of Human Knowledge What may be recognized by the following characteristics?

• A meager and hollow, but crisp, taste.

• A habit of getting up late. Answer: A snark.

• A slowness in taking a jest.

• A fondness for bathing machines.

• Ambition.

14

9. (8 points) In the Trees

If you are careful about how you draw a binary tree, its nodes will line up in columns. Here, for example, is a
tree with six columns of nodes (indicated by dotted lines; the numbers at top are column numbers):

6

3

5

9 2

7

1

4

0

8

-3 -2 -1 0 1 2

Let’s designate the column containing the root as column 0. For any node in column k, we’ll says its left child
is in column k − 1 and its right in column k + 1. In general, nodes will overlap when you do this, but we’ll
ignore that possibility.

Write a program to print all the nodes in a given column of a tree, given the tree and the column number. The
type BinTree is as defined in the Reference section on page 2 of this test. (Don’t forget that the empty tree is
a valid input to print_column.) You may not need all the lines.

def print_column(tree , col):

"""Print the labels of the nodes in column COL of BinTree TREE ,

in any order , one per line.

>>> e = BinTree.empty

>>> tree = BinTree(6,

... BinTree(3,

... BinTree(5, BinTree(9), BinTree(2, e, BinTree(7))) ,

... BinTree(1)),

... BinTree(4, e, BinTree(0, BinTree(8))))

>>> print_column(tree , -1)

3

2

>>> print_column(tree , 2)

0"""

def print_inner(t, k):

if t is BinTree.empty:

return

if k == col:

print(t.label)

else:

print_inner(t.left , k-1)

print_inner(t.right , k+1)

Name: 15

print_inner(tree , 0)

16

10. (10 points) Treebeard’s Revenge

This problem combines Trees and Links (see the reference section on page 2). (Be careful not to confuse type
Tree with type BinTree used earlier.)

(a) (5 pt) Fill in the tree_search function so that tree_search(tr, pred) returns a linked list of all labels in
tr (of type Tree) that satisfy pred (that is, for which the one-argument function pred returns a true value).
The order of the list is irrelevant.

def tree_search(tr , pred):

"""Returns a linked list (type Link) of labels in Tree tr that

satisfy PRED.

>>> t = Tree(4, [Tree(5, [Tree(6, [Tree(5)])]), Tree(1, [])])

>>> tree_search(t, lambda x: x%2 == 1)

Link(5, Link(5, Link(1)))

"""

L = Link.empty

def subtree_search(subtr):

nonlocal L

if pred(subtr.label):

L = Link(subtr.label , L)

for c in subtr.children:

subtree_search(c)

subtree_search(tr)

return L

Name: 17

(b) (5 pt) An Organizer is a kind of object that divides the labels in a tree into a sequence of disjoint lists, one for
each of a given set of categories. To create an Organizer, one provides a sequence of predicates (one-argument
functions) that define the categories. When this object is subsequently handed a Tree, it will return a sequence
of linked lists of tree labels, one per category in the same order as the original sequence of category predicates.
Once a tree label is included in one list, it must not appear again in that list, nor in any subsequent list. Fill
in the class below to fulfill this specification. You may assume that labels are numbers or strings.

class Organizer:

def __init__(self , categories):

"""Create a new Organizer whose categories are defined by the

predicates in CATEGORIES (an iterable)."""

self._categories = categories

def categorize(self , tr):

"""Return a Python sequence of linked lists , where the kth

list contains tree labels from TR that satisfy my kth

category. Each tree label appears exactly once in the entire

set of lists returned , regardless of how often it occurs in TR.

NOTE: The order of values in the linked lists in the example

below is just one possible result.

>>> tr = Tree(6, [Tree(3, [Tree(5, [Tree(9), Tree(2, [Tree(9)])]),

... Tree(1)])

... Tree(4, [Tree(0, [Tree (4)])])])

>>> or = Organizer([lambda x: x > 4, lambda x: x%2 == 0])

>>> or.categorize(tr)

[Link(6, Link(5, Link (9))) , Link(4, Link(0, Link(2)))]

"""

result = []

labels_seen = []

def take_it(x):

if x not in labels_seen and pred(x):

labels_seen.append(x)

return True

return False

for pred in self._categories:

result.append(tree_search(tr, take_it))

return result

18

11. (4 points) Exstream!

You may have seen the power series for computing the exponential function:

ex =
∑

k≥0

xk

k!
= 1 + x+

x2

2!
+

x3

3!
+

By computing and adding one term at a time, one can get as close as desired to the value of ex, giving an
infinite sequence of approximations:

1, 1 + x, 1 + x+
x2

2!
, 1 + x+

x2

2!
+

x3

3!
,

Fill in the blanks below so that e2x(x) creates a Python Stream (see page 2) consisting of this sequence of
approximations. Do not introduce any additional lambda expressions or def statements than are already there.

def const_stream(x):

r = Stream(x, lambda: r)

return r

def add_streams(s0, s1):

return Stream(s0.first + s1.first ,

lambda: add_streams(s0.rest , s1.rest))

def mul_streams(s0, s1):

return Stream(s0.first * s1.first ,

lambda: mul_streams(s0.rest , s1.rest))

def div_streams(s0, s1):

return Stream(s0.first / s1.first ,

lambda: div_streams(s0.rest , s1.rest))

positives = Stream(1, lambda: add_streams(positives , const_stream(1)))

def e2x(x):

powers_of_x = Stream(x, lambda: mul_streams(const_stream(x), powers_of_x))

factorials = Stream (1, lambda: mul_streams(positives.rest , factorials))

r = Stream (1, lambda: add_streams(r, div_streams(powers_of_x , factorials)))

return r

Name: 19

Scheme Art Contest Winners
Featherweight Division

First Place
Recursive Bleeding

Carson Trinh

Hilfinger in spring

and then Hilfinger in fall

Will it ever end?

Second Place (tie)
tree in early spring

Matej Sebo

tree in early spring

branches weaving up, sprouting

into myriad leaves

Second Place (tie)
T.L.O.P

Abraham Chen, Bill Cai

The Life of Pablo

Vote yes and we’ll love you like

Kanye loves Kanye

Heavyweight Division

First Place
Twisted Logic
Kyla Woyshner

What if you were lost,

An endless kaleidoscope,

No hope of square one

Second Place
Stairway to Heaven

Sharabesh Ramesh, Jared Gutierrez

The one last project

Alone it stands defeated

61A no more

