
Lecture #12: Immutable and Mutable Data

Last modified: Mon Feb 22 16:33:22 2016 CS61A: Lecture #12 1

Listing Leaves

def leaf_labels(tree):

"""A list of the labels of all leaves in TREE."""

Last modified: Mon Feb 22 16:33:22 2016 CS61A: Lecture #12 2

Representing Expressions

• An expression tree represents an expression, such as 2 * (5+3)

*

2 +

5 3

def eval(expr):

"""The value yielded by the computation represented by

expression tree EXPR. Assumes all leaves are numbers

and all inner-node labels are operators."""

Last modified: Mon Feb 22 16:33:22 2016 CS61A: Lecture #12 3

Building Recursive Structures

• In Lecture #10, we defined map_rlist and filter_rlist:

def map_rlist(f, s):

"""The rlist of values F(x) for each element x of rlist S in order."""

if isempty(s):

return empty_rlist

else:

return make_rlist(f(first(s)), map_rlist(f, rest(s)))

def filter_rlist(cond, seq):

"""The rlist consisting of the subsequence of rlist SEQ for which

the 1-argument function COND returns a true value."""

if isempty(seq):

return empty_rlist

elif cond(first(seq)):

return make_rlist(first(seq), filter_rlist(cond, rest(seq)))

else:

return filter_rlist(cond, rest(seq))

• In both cases, the original input rlist is preserved and a new list
created: the operation is non-destructive.

• We treat these lists as immutable: unchanging once created.
Last modified: Mon Feb 22 16:33:22 2016 CS61A: Lecture #12 4

Another Example: Concatenating Rlists

• To keep with Python terminology, adding one element to the end of a
list is appending, and concatenating two lists together is extending.

def extend_rlist(left, right):

"""The sequence of items of rlist LEFT followed by the items of RIGHT."""

if :

return

else:

return

Last modified: Mon Feb 22 16:33:22 2016 CS61A: Lecture #12 5

Concatenating Rlists (II)

def extend_rlist(left, right):

"""The sequence of items of rlist LEFT followed by the items of RIGHT."""

if isempty(left):

return right

else:

return make_rlist(first(left),

extend_rlist(rest(left), right))

• Here, the left argument gets duplicated, but with its last rest value
being right instead of empty_rlist.

Last modified: Mon Feb 22 16:33:22 2016 CS61A: Lecture #12 6

Still Another Example: Mapping a Tree

• From lecture #11, a tree’s recursive structure is:

– A label and

– Zero or more children, each a tree.

def map_tree(f, T):

"""The tree T with each label, lab, replaced by F(lab)."""

return

Hint: Use the map operation on sequences!

Last modified: Mon Feb 22 16:33:22 2016 CS61A: Lecture #12 7

Mapping a Tree (II)

• From lecture #11, a tree’s recursive structure is:

– A label and

– Zero or more children, each a tree.

def map_tree(f, T):

"""The tree T with each label, lab, replaced by F(lab)."""

return make_tree(label(T),

map(lambda x: map_tree(f,x), children(T)))

or

return make_tree(label(T),

[map_tree(f, x) for x in children(T)])

• What? No base case???!!!

Last modified: Mon Feb 22 16:33:22 2016 CS61A: Lecture #12 8

Immutability and Nondestructive Operations

• The functions in this lecture (and in previous ones) did not modify
existing list or tree structures.

• That is, they were non-destructive; they preserved the original in-
put data:

>>> L0 = make_rlist(-3, make_rlist(-2, make_rlist(-1)))

>>> L0

(-3, (-2, (-1, None))) # Assumes empty_rlist is None.

>>> L1 = map_rlist(abs, L0)

>>> L1

(3, (2, (1, None)))

>>> L0

(-3, (-2, (-1, None)))

• Indeed, the rlist interface makes them immutable.

• This is a very useful property:

– List values behave like integer values (e.g.): stay around as long
as needed in a computation.

– Potentially useful in parallel computations.

Last modified: Mon Feb 22 16:33:22 2016 CS61A: Lecture #12 9

Mutability and Destructive Operations

• What if we don’t need the original data?

• Then nondestructive operations have memory costs, possibly time
costs as well.

• Suppose we add two more operations to rlist:

def set_first(r, v):

"""Cause first(R) to be V."""

R[0] = v

def set_rest(r, V):

"""Cause rest(R) to be V."""

R[1] = v

• To do this, we need to change our implementation of make_rlist
subtly:

def make_rlist(first, rest = empty_rlist):

"""A recursive list, r, such that first(r) is FIRST and

rest(r) is REST, which must be an rlist."""

return [first, rest] ⇐= square brackets

• We use a Python list (mutable) instead of a tuple (immutable).

Last modified: Mon Feb 22 16:33:22 2016 CS61A: Lecture #12 10

Destructive Mapping

def dmap_rlist(f, s):

"""The rlist of values F(x) for each element x of rlist S in

order. May modify S."""

if isempty(s):

return empty_rlist # This case doesn’t change

else:

?

Last modified: Mon Feb 22 16:33:22 2016 CS61A: Lecture #12 11

Destructive Mapping (II)

def dmap_rlist(f, s):

"""The rlist of values F(x) for each element x of rlist S in

order. May modify S."""

if isempty(s):

return empty_rlist # This case doesn’t change

else:

set_first(s, f(first(s)))

dmap_rlist(f, rest(s))

return s

>>> L0 = make_rlist(-3, make_rlist(-2, make_rlist(-1)))

>>> L0

(-3, (-2, (-1, None))) # Assumes empty_rlist is None.

>>> L1 = dmap_rlist(abs, L0)

>>> L1

(3, (2, (1, None)))

>>> L0

(3, (2, (1, None))) # Original data lost

Last modified: Mon Feb 22 16:33:22 2016 CS61A: Lecture #12 12

Iterative Version of dmap rlist

def dmap_rlist2(f, s):

"""The rlist of values F(x) for each element x of rlist S in

order. May modify S."""

p = s

while not isempty(p):

return

Last modified: Mon Feb 22 16:33:22 2016 CS61A: Lecture #12 13

Iterative Version of dmap rlist (II)

def dmap_rlist2(f, s):

"""The rlist of values F(x) for each element x of rlist S in

order. May modify S."""

p = s

while not isempty(p):

set_first(p, f(first(p)))

p = rest(p)

return s

Last modified: Mon Feb 22 16:33:22 2016 CS61A: Lecture #12 14

The Picture

• Good idea to have a mental picture of the differences here.

L0 = make_rlist(-3, make_rlist(-2, make_rlist(-1)))

L1 = map_rlist(abs, L0)

L0: -1 -2 -3

L1: 1 2 3

L2 = dmap_rlist(lambda x: x**2, L0)

L0: 1 4 9

L2:

L1: 1 2 3

Last modified: Mon Feb 22 16:33:22 2016 CS61A: Lecture #12 15

Identity

• In a previous lecture, I pointed out the distinction between the
identity of objects:

S0 = (1, 2, 3); S1 = (1, 2, 3)

(S0 is S1) == False

• And equality of contents:

(S0 == S1) == True

• When dealing with immutable objects, we generally ignore identity;
only equality of contents ever matters, and once equal always equal.

• Allows referential transparency: if S[0] == 3, and S not re-assigned,
can substitute 3 for S[0] anywhere.

• When dealing with mutable structures, identity matters, and we
don’t have referential transparency.

Last modified: Mon Feb 22 16:33:22 2016 CS61A: Lecture #12 16

	Lecture #12: Immutable and Mutable Data
	Listing Leaves
	Representing Expressions
	Building Recursive Structures
	Another Example: Concatenating Rlists
	Concatenating Rlists (II)
	Still Another Example: Mapping a Tree
	Mapping a Tree (II)
	Immutability and Nondestructive Operations
	Mutability and Destructive Operations
	Destructive Mapping
	Destructive Mapping (II)
	Iterative Version of dmap_rlist
	Iterative Version of dmap_rlist (II)
	The Picture
	Identity

