
Lecture #25: Programming Languages and Programs

• A programming language, is a notation for describing computations
or processes.

• These range from low-level notations, such as machine language or
simple hardware description languages, where the subject matter is
typically finite bit sequences and primitive operations on them that
correspond directly to machine instructions or gates, . . .

• . . . To high-level notations, such as Python, in which the subject mat-
ter can be objects and operations of arbitrary complexity.

• The universe of implementations of these languages is layered: Python
can be implemented in C, which in turn can be implemented in assem-
bly language, which in turn is implemented in machine language, which
in turn is implemented with gates, which in turn are implemented
with transistors.

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 1

Metalinguistic Abstraction

• We’ve created abstractions of actions—functions—and of things—
classes.

• Metalinguistic abstraction refers to the creation of languages—
abstracting description. Programming languages are one example.

• Programming languages are effective: they can be implemented.

• These implementations interpret utterances in that language, per-
forming the described computation or controlling the described pro-
cess.

• The interpreter may be hardware (interpreting machine-language
programs) or software (a program called an interpreter), or (in-
creasingly common) both.

• To be implemented, though, the grammar and meaning of utterances
in the programming language must be defined precisely.

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 2

A Sample Language: Calculator

• Source: John Denero.

• Prefix notation expression language for basic arithmetic Python-like
syntax, with more flexible built-in functions.

calc> add(1, 2, 3, 4)

10

calc> mul()

1

calc> sub(100, mul(7, add(8, div(-12, -3))))

16.0

calc> -(100, *(7, +(8, /(-12, -3))))

16.0

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 3

Syntax and Semantics of Calculator

Expression types:

• A call expression is an operator name followed by a comma-separated
list of operand expressions, in parentheses

• A primitive expression is a number

Operators:

• The add (or + operator returns the sum of its arguments

• The sub (-) operator returns either

– the additive inverse of a single argument, or

– the sum of subsequent arguments subtracted from the first.

• The mul (*) operator returns the product of its arguments.

• The div (/) operator returns the real-valued quotient of a dividend
and divisor.

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 4

Expression Trees (again)

• Our calculator program represents expressions as trees (see Lec-
ture #12).

• It consists of a parser, which produces expression trees from in-
put text, and an evaluator, which performs the computations repre-
sented by the trees.

• You can use the term “interpreter” to refer to both, or to just the
evaluator.

• To create an expression tree:

class Exp(object):

"""A call expression in Calculator."""

def __init__(self, operator, operands):

self.operator = operator

self.operands = operands

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 5

Expression Trees By Hand

As usual, we have defined (in lect25.py) the methods __repr__ and
__str__ to produce reasonable representations of expression trees:

>>> Exp(’add’, [1, 2])

Exp(’add’, [1, 2])

>>> str(Exp(’add’, [1, 2]))

’add(1, 2)’

>>> Exp(’add’, [1, Exp(’mul’, [2, 3, 4])])

Exp(’add’, [1, Exp(’mul’, [2, 3, 4])])

>>> str(Exp(’add’, [1, Exp(’mul’, [2, 3, 4])]))

’add(1, mul(2, 3, 4))’

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 6

Evaluation

Evaluation discovers the form of an expression and then executes a
corresponding evaluation rule.

• Primitive expressions (literals) “evaluate to themselves”

• Call expressions are evaluated recursively, following the tree struc-
ture:

– Evaluate each operand expression, collecting values as a list of
arguments.

– Apply the named operator to the argument list.

def calc_eval(exp):

"""Evaluate a Calculator expression."""

if type(exp) in (int, float):

return exp

elif type(exp) == Exp:

arguments = list(map(calc_eval, exp.operands))

return calc_apply(exp.operator, arguments)

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 7

Applying Operators

Calculator has a fixed set of operators that we can enumerate

def calc_apply(operator, args):

"""Apply the named operator to a list of args.

if operator in (’add’, ’+’):

return sum(args)

if operator in (’sub’, ’-’):

if len(args) == 0:

raise TypeError(operator + ’requires at least 1 argument’)

if len(args) == 1:

return -args[0]

return sum(args[:1] + [-arg for arg in args[1:]])

etc.

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 8

Read-Eval-Print Loop

The user interface to many programming languages is an interactive
loop that

• Reads an expression from the user

• Parses the input to build an expression tree

• Evaluates the expression tree

• Prints the resulting value of the expression

def read_eval_print_loop():

"""Run a read-eval-print loop for calculator."""

while True:

try:

expression_tree = calc_parse(input(’calc> ’))

print(calc_eval(expression_tree))

except:

print error message and recover

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 9

Calculator Example: Parsing

Recap: The strategy.

• Parsing: Convert text into expression trees.

• Evaluation: Recursively traverse the expression trees calculating a
result

’add(2, 2)’ =⇒ Exp(’add’, (2, 2)) =⇒ 4

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 10

Parsing: Lexical and Syntactic Analysis

• To parse a text is to analyze it into its constituents and to describe
their relationship or structure.

• Thus, we can parse an English sentence into nouns, verbs, adjectives,
etc., and determine what plays the role of subject, what is plays the
role of object of the action, and what clauses or words modify what.

• When processing programming languages, we typically divide task
into two stages:

– Lexical analysis (aka tokenization): Divide input string into mean-
ingful tokens, such as integer literals, identifiers, punctuation
marks.

– Syntactic analysis: Convert token sequence into trees that re-
flect their meaning.

def calc_parse(line): # From lect24.py

"""Parse a line of calculator input and return an expression tree."""

tokens = tokenize(line)

expression_tree = analyze(tokens)

return expression_tree

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 11

Tokens

• Purpose of tokenize is to perform a transformation like this:

>>> tokenize(’add(2, mul(4, 6))’)

[’add’, ’(’, ’2’, ’,’, ’mul’, ’(’, ’4’, ’,’, ’6’, ’)’, ’)’]

• In principle, we could dispense with this step and go from text to
trees directly, but

• We choose these particular chunks because they correspond to how
we think about and describe the text, and thus make analysis sim-
pler:

– We say “the word ‘add’ ”, not “the character ‘a’ followed by the
character ‘b’. . . ”

– We don’t mention spaces at all.

• In production compilers, the lexical analyzer typically returns more
information, but the simple tokens will do for this problem.

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 12

Quick-and-Dirty Tokenizing

• For our simple purposes, we can use a few simple Python routines to
do the job.

• For example, if all our tokens were separated by whitespace, we
could use the .split() method on strings to break up the input, af-
ter first using the .strip() method to remove any leading or trail-
ing whitespace:

>>> " add (2 , 2) ".strip().split()

[’add’, ’(’, ’2’, ’,’, ’2’, ’)’]

• [Gee. How did I find out about these useful methods? What prompted
me to go looking?]

• So now, we just need to get a string with everything separated.

• Since integer literals and words (like ‘add’ or ‘+’) are not supposed
to be next to each other in the syntax, it would suffice to surround
any punctuation characters with spaces.

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 13

Quick-and-Dirty Tokenizing: The Code

• Option 1: use the .replace method on strings:

def tokenize(line):

"""Convert a string into a list of tokens."""

spaced = line.replace(’(’,’ (’).replace(’)’,’) ’) \

.replace(’,’, ’ , ’)

return spaced.strip().split()

• Option 2: same as Option 1, but use a loop to make it more easily
extensible:

spaced = line

for c in "(),":

spaced = spaced.replace(c, ’ ’ + c + ’ ’)

• Option 3: Import the package re, and use pattern replacement:

spaced = re.sub(r’([(),])’, r’ \1 ’, line)

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 14

Syntactic Analysis: Find the Recursion

• Consider the definition of a calculator expression:

– A numeral, or

– An operator, followed by a ‘(’, followed by a sequence of calculator
expressions separated by commas, followed by a right parenthe-
sis.

• The recursion in the definition suggests the recursive structure of
our analyzer.

• This particular syntax has two useful properties:

– By looking at the first token of a calculator expression, we can
tell which of the two branches above to take, and

– By looking at the token immediately after each operand, we can
tell when we’ve come to the end of an operand list.

• That is, we can predict on the basis of the next (as-yet unpro-
cessed) token, what we’ll find next.

• Allows us to build a predictive recursive-descent parser that uses
one token of lookahead.

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 15

Analysis from the Top

• Plan: organize our program into two mutually recursive functions:
one for expressions, and one for operand lists.

• Each of these will input a list of tokens and consume (remove) the
tokens comprising the expression or list it finds, returning tree(s).

def analyze(tokens):

"""Return the translation of a prefix of ’tokens’

that forms a calculator expression into a tree,

removing the tokens used."""

token = analyze_token(tokens.pop(0))

if type(token) in (int, float):

return token

else:

return Exp(token, analyze_operands(tokens))

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 16

Handling Operands

def analyze_operands(tokens):

"""Assuming that ’tokens’ is a comma-separated

list of expressions surrounded by ’(...)’, return

their translations into a list of trees, removing

all the tokens thus used."""

operands = []

while tokens.pop(0) != ’)’:

operands.append(analyze(tokens))

return operands

Notes:

• Every trip through the while loop splits off an operand.

• The while condition has the side effect of removing the next token.

• This token is ’(’ on the first trip, ’,’ after each operand but the last,
and ’)’ after the last operand.

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 17

Detail: Token Coercion

• The analyze_token function converts numerals (text) into Python
numbers.

• In actual compilers, this is often done by the lexical analyzer, but
the boundary between lexer and parser is moveable.

def analyze_token(token):

"""Return the numeric value of token if it can be

analyzed as a number, and otherwise token itself."""

try:

return int(token) # Why try this first?

except ValueError:

try:

return float(token)

except ValueError:

return token

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 18

Limitations of Predictive Parsers

• Not all languages lend themselves to predictive parsing.

• Consider the English sentence:

Subject of the sentence
︷ ︸︸ ︷

The horse raced past the barn fell.

• This is an example of a garden-path sentence:

– You expect (might reasonably predict) that the subject is “The
horse,” and ends just before “raced.”

– But “raced” here means “that was raced,” which you can’t tell until
you get to the last word.

• One can use backtracking in this case (like the maze program).

• Requires a different program structure.

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 19

Dealing with Errors

• Code so far has assumed correct input. In real life, one must be less
trusting.

known_operators = {’add’, ’sub’, ’mul’, ’div’, ’+’, ’-’, ’*’, ’/’}

def analyze(tokens):

if not tokens: raise SyntaxError(’unexpected end of line’)

token = analyze_token(tokens.pop(0))

if type(token) in (int, float):

return token

if token in known_operators:

return Exp(token, analyze_operands(tokens))

else:

raise SyntaxError(’unexpected ’ + token)

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 20

Dealing with Errors with a Little More Style

• Error-checking code clutters the program, so we might opt for some-
thing a bit clearer.

known_operators = {’add’, ’sub’, ’mul’, ’div’, ’+’, ’-’, ’*’, ’/’ }

def analyze(tokens):

token = next_token(tokens, known_operators)

if type(token) in (int, float):

return token

else:

return Exp(token, analyze_operands(tokens))

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 21

Catching Errors in next token

def next_token(tokens, allowed):

if len(tokens) == 0:

token, name = None, ’*ENDLINE*’

else:

token = name = analyze_token(tokens.pop())

if token in allowed or \

(type(token) in [int, float] and int in allowed):

return token

else:

raise SyntaxError(’unexpected token: ’ + name)

Last modified: Mon Mar 28 15:27:51 2016 CS61A: Lecture #25 22

	Lecture #25: Programming Languages and Programs
	Metalinguistic Abstraction
	A Sample Language: Calculator
	Syntax and Semantics of Calculator
	Expression Trees (again)
	Expression Trees By Hand
	Evaluation
	Applying Operators
	Read-Eval-Print Loop
	Calculator Example: Parsing
	Parsing: Lexical and Syntactic Analysis
	Tokens
	Quick-and-Dirty Tokenizing
	Quick-and-Dirty Tokenizing: The Code
	Syntactic Analysis: Find the Recursion
	Analysis from the Top
	Handling Operands
	Detail: Token Coercion
	Limitations of Predictive Parsers
	Dealing with Errors
	Dealing with Errors with a Little More Style
	Catching Errors in next_token

