The ease by which other people can read and understand a program (often called "readability" in software engineering) is perhaps the most important quality of a program. Readable programs are used and extended by others, sometimes for decades. For this reason, we often repeat in 61A that programs are written to be read by humans, and only incidentally to be interpreted by computers.

A program is composed well if it is concise, well-named, understandable, and easy to follow.

Excellent composition does not mean adhering strictly to prescribed style conventions. There are many ways to program well, just as there are many styles of effective communication. However, the following guiding principles universally lead to better composition of programs:

  • Names. To a computer, names are arbitrary symbols: "xegyawebpi" and "foo" are just as meaningful as "tally" and "denominator". To humans, comprehensible names aid immensely in comprehending programs. Choose names for your functions and values that indicate their use, purpose, and meaning. See the lecture notes section on choosing names for more suggestions.
  • Functions. Functions are our primary mechanism for abstraction, and so each function should ideally have a single job that can be used throughout a program. When given the choice between calling a function or copying and pasting its body, strive to call the function and maintain abstraction in your program. See the lecture notes section on composing functions for more suggestions.
  • Purpose. Each line of code in a program should have a purpose. Statements should be removed if they no longer have any effect (perhaps because they were useful for a previous version of the program, but are no longer needed). Large blocks of unused code, even when turned into comments, are confusing to readers. Feel free to keep your old implementations in a separate file for your own use, but don't turn them in as your finished product.
  • Brevity. An idea expressed in four lines of code is often clearer than the same idea expressed in forty. You do not need to try to minimize the length of your program, but look for opportunities to reduce the size of your program substantially by reusing functions you have already defined.