
Welcome to CS61A!

Last modified: Wed Jan 18 13:30:53 2017 CS61A: Lecture #1 1

This week

• Yes, we don’t all fit in Pauley Ballroom! Anyone who does not insist
on seeing my face can use the screencasts and the posted lecture
slides, and not actually come to lecture.

• Please see the course web site (http://cs61a.org), esp. the an-
nouncements and Course Info link. (Bear with us: the web site is
under construction).

• If you did not complete the lab this week, you should try to to get
it done offline (see http://cs61a.org/lab/lab00).

• Next week, labs (between Monday and Wednesday lecture) and dis-
cussions meet according to the published schedule.

• Try to find a lab and discussion section with the same TA, if pos-
sible. If enrolled, don’t worry about changing things on CalCentral.
If waitlisted, choose some discussion/lab if possible. Will try to
resolve conflicts next week.

Last modified: Wed Jan 18 13:30:53 2017 CS61A: Lecture #1 2

http://cs61a.org
http://cs61a.org/lab/lab00

What’s This Course About?

• This is a course about programming, which is the art and science of
constructing artifacts (“programs”) that perform computations or
interact with the physical world.

• To do this, we have to learn a programming language (Python in our
case), but programming means a great deal more, including

– Design of what programs do.

– Analysis of the performance of programs.

– Confirmation of their correct operation.

– Management of their complexity.

• This course is about the “big ideas” of programming. We expect
most of what you learn to apply to any programming language.

Last modified: Wed Jan 18 13:30:53 2017 CS61A: Lecture #1 3

Course Organization

• Readings cover the material. Try to do them before. . .

• Lectures summarize material, or present alternative “takes” on it.

• Laboratory exercises are “finger exercises” designed to introduce a
new topic or certain practical skills. Unlimited collaboration.

• Homework assignments are more involved than lab exercises and of-
ten require some thought. Plan is to have them due on Monday. Feel
free to discuss the homework with other students, but turn in your
own solutions.

• Projects are four larger multi-week assignments intended to teach
you how to combine ideas from the course in interesting ways. We’ll
be doing at least some of these in pairs.

• Use the discussion board (Piazza) for news, advice, etc.

Last modified: Wed Jan 18 13:30:53 2017 CS61A: Lecture #1 4

Mandatory Warning

• We allow unlimited collaboration on labs.

• On homework, feel free to collaborate, but try to keep your work
distinct from everyone else’s.

• Likewise on projects, except that you and your partner submit a
joint project.

• You can take small pieces of code within reason (ask if unsure), but
you must attribute it!

• Otherwise, copying is against the Code of Conduct, and generally
results in penalties.

• Most out-and-out copying is due to desparation and time pressure.
Instead, see us if you’re having trouble; that’s what we’re here for!

Last modified: Wed Jan 18 13:30:53 2017 CS61A: Lecture #1 5

What’s In A Programming Language?

• Values: the things programs fiddle with;

• Primitive operations (on values);

• Combining mechanisms, which glue operations together;

• Some predefined names (the “library”);

• Definitional mechanisms, which allow one to introduce symbolic names
and (in effect) to extend the library.

Last modified: Wed Jan 18 13:30:53 2017 CS61A: Lecture #1 6

Python Values (I)

• Python has a rich set of values, including:

Type Values Literals (Denotations)
Integers 0 − 1 16 13 0 -1 0o20 0b1101

36893488147419103232 0x20000000000000000

Boolean (truth) values true, false True False

“Null” None

Functions operator.add, operator.mul,

operator.lt, operator.eq

• Functions take values and return values (including functions). Thus,
the definition of “value” is recursive: definition of function refers
to functions.

• They don’t look like much, perhaps, but with these values we can
represent anything!

Last modified: Wed Jan 18 13:30:53 2017 CS61A: Lecture #1 7

Python Values (II)

• . . . but not conveniently. So now we add more complex types, includ-
ing:

Type Values Literals (Denotations)
Strings pear, "pear"

I ♥ NY "I \u2661 NY"

Say "Hello" "Say \"Hello\""

Tuples (), (1, "Hello", (3, 5))

Ranges 0–10, 1–5 range(10), range(1, 5)

Lists [], [1, "Hello", (3, 5)]

[x**3 for x in range(5)]

Dictionaries { "Paul" : 60, "Ann" : 59,

"John" : 56 }

Sets {}, {1, 2}, set([]), { 1, 2 },

{x | 0 ≤ x < 20 { x for x in range(20) if prime(x) }

∧ xis prime

Last modified: Wed Jan 18 13:30:53 2017 CS61A: Lecture #1 8

What Values Can Represent

• The tuple type (as well as the list, dictionary, set class types) give
Python the power to represent just about anything.

• In fact, we could get away with allowing just pairs: tuples with two
elements:

– Tuples can contain tuples (and lists can contain lists), which allows
us to get as fancy as we want.

– Instead of (1, 2, 7), could use (1, (2, (7, None))),

– But while elegant, this would make programming tedious.

Last modified: Wed Jan 18 13:30:53 2017 CS61A: Lecture #1 9

Python’s Primitive Operations

• Literals are the base cases.

• Functions in particular are the starting point for creating programs:

sub(truediv(mul(add(add(3, 7), 10), sub(1000, 8)), 992), 17)

• To evaluate a function call:

– Evaluate the caller (left of the parentheses).

– Evaluate the arguments (within the parentheses).

– The caller then tells what to do and what value to produce from
the operand’s values

• For the convenience of the reader, though, Python employs a great
deal of “syntactic sugar” to produce familiar notation:

(3 + 7 + 10) * (1000 - 8) / 992 - 17

Last modified: Wed Jan 18 13:30:53 2017 CS61A: Lecture #1 10

Evaluating a Function Call

• Consider

(3 + 7 + 10) * (1000 - 8) / 992 - 17

which “sugars”

sub(truediv(mul(add(add(3, 7), 10), sub(1000, 8)), 992), 17)

• The numerals all evaluate in the obvious way.

• Then proceed from the inside out:

sub(truediv(mul(add(add(3, 7), 10), sub(1000, 8)), 992), 17)

sub(truediv(mul(add(10, 10), 992), 992), 17)

sub(truediv(mul(20 , 992), 992), 17)

sub(truediv(19840 , 992), 17)

sub(20, 17)

3

Last modified: Wed Jan 18 13:30:53 2017 CS61A: Lecture #1 11

Combining and Defining

• Certain primitives are needed to allow conditional execution:

print(1 if x > 0 else -1 if x < 0 else 0)

or equivalently

if x > 0:

print(1)

elif x < 0:

print(-1)

else:

print(0)

• Defining a new function:

def signum(x):

return 1 if x > 0 else -1 if x < 0 else 0

Now signum denotes a function.

• Doesn’t look like we have a lot, but in fact we already have enough
to implement all the computable functions on the integers!

Last modified: Wed Jan 18 13:30:53 2017 CS61A: Lecture #1 12

Getting repetition

• Haven’t explicitly mentioned any construct to “repeat X until . . . ” or
“repeat X N times.” Technically, none is needed.

• Suppose you’d like to compute x + 2x2 + 3x3 + . . . +NxN for any N :

def series(x, N):

if N == 1:

return x

else:

return N * x**N + series(x, N-1)

• But again, we have syntactic sugar (which is the usual approach in
Python):

def series(x, N):

S = 0

for k in range(1, N+1):

S += k * x**k

return S

Last modified: Wed Jan 18 13:30:53 2017 CS61A: Lecture #1 13

A Few General Rules

• Whatever the assignment, start now.

• “Yes, that’s really all there is. Don’t fight the problem.”

• Practice is important. Don’t just assume you can do it; do it!

• ALWAYS feel free to ask us for help.

• DBC

• RTFM

• Have fun!

Last modified: Wed Jan 18 13:30:53 2017 CS61A: Lecture #1 14

	Welcome to CS61A!
	This week
	What's This Course About?
	Course Organization
	Mandatory Warning
	What's In A Programming Language?
	Python Values (I)
	Python Values (II)
	What Values Can Represent
	Python's Primitive Operations
	Evaluating a Function Call
	Combining and Defining
	Getting repetition
	A Few General Rules

