
Lecture #16: Iterators, Generators

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 1



An Iterator Confusion

• The distinction between iterators (things with a next method)
and iterables (things from which the iter function can construct an
iterator) can be confusing, and sometimes downright incovenient.

• Suppose that backwards(L) returns an iterator object that returns
the values in list L from last to first:

class backwards:

def init (self, L):

self. L = L, self. k = len(L) - 1

def next (self):

if self. k < 0: raise StopIteration

else:

self. k -= 1; return self. L[self. k + 1]

• The following won’t work [why not?]:

for x in backwards(L):

print(x)

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 2



An Iterator Convention

• Problem is that for expects an iterable, but a backwards is a pure
iterator.

• This is awkward, so the usual fix is always to define iterator objects
to have a trivial iter method on them:

class backwards:

def init (self, L):

self. L = L, self. k = len(L) - 1

def iter (self):

return self # Now I am my own iterator

def next (self):

...

• Iterators returned by Python library methods and other standard
language constructs obey this convention.

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 3



Using getitem for Iterables

• When confronted with a type that does not implement iter , but
does have a getitem , the iter function creates an iterator.

• This in itself is an example of generic programming!

• Conceptually:

class GetitemIterator:

def init (self, anIterable):

"""An iterator over ANITERABLE, which must implement getitem .

This iterator returns ANITERABLE[0], ANITERABLE[1], ... up

to and not including the first index that causes an

IndexError or StopIteration."""

def next (self):

?

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 4



Using getitem for Iterables (II)

A possible implementation:
class GetitemIterator:

def init (self, anIterable):

"""An iterator over ANITERABLE, which must implement getitem .

This iterator returns ANITERABLE[0], ANITERABLE[1], ... up

to and not including the first index that causes an

IndexError or StopIteration."""

self. iterable = anIterable

self. nextIndex = 0

def next (self):

try:

v = self. iterable[self. nextIndex]

self. nextIndex += 1

return v

except IndexError:

raise StopIteration

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 5



Problem: Reconstruct the range class

• Want Range(1, 10) to give us something that behaves like a Python
range, so that

for x in Range(1, 10):

print(x)

prints 1–9.

class Range:

???

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 6



Reconstructing Range (I)

class Range:

def init (self, first, end, step=1):

assert step != 0

??

def getitem (self, k):

??

def iter (self):

return ??

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 7



Reconstructing Range (II)

class Range:

def init (self, first, end, step=1):

assert step != 0

self. first, self. end, self. step = first, end, step

def getitem (self, k):

??

def iter (self):

??

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 8



Reconstructing Range (III)

class Range:

def init (self, first, end, step=1):

assert step != 0

self. first, self. end, self. step = first, end, step

def getitem (self, k):

if k < 0:

if 0 <= k < self. len:

return

else:

def iter (self):

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 9



Reconstructing Range (IV)

class Range:

def init (self, first, end, step=1):

assert step != 0

self. first, self. end, self. step = first, end, step

def getitem (self, k):

if k < 0:

k += self. len

if 0 <= k < self. len:

return self. first + k * self. step

else:

raise IndexError

def iter (self):

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 10



Reconstructing Range (V)

class Range:

def init (self, first, end, step=1):

assert step != 0

self. first, self. end, self. step = first, end, step

def getitem (self, k):

if k < 0:

k += self. len

if 0 <= k < self. len:

return self. first + k * self. step

else:

raise IndexError

def iter (self):

return GetitemIterator(self)

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 11



Discussion

• An iterator represents a kind of “deconstruction” of a loop.

• Instead of writing a loop such as

x = 0 # Initialize iterator object, iterobj

while x < N: # iterobj. next , part 1

Do something using x
x += 1 # iterobj. next , part 2

• . . . we break it up as suggested by the comments.

• In some cases (e.g., iterators on trees), the result can be rather
clumsy.

• Python provides a different, and generally clearer way to build these
iterator objects: as generators.

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 12



Generators

• For a generator, one writes a function that produces in sequence all
the desired values by means of yield statements.

• When such a function is called, it executes up to, but not including,
the first yield and returns a generator object, which is a kind of
iterator.

• Trivial example:

>>> def pairGen(x, y):

... """A generator that yields X and then Y."""

... yield x

... yield y

>>> oneTwo = pairGen(1, 2)

>>> oneTwo

<generator object pairGen ...>

>>> oneTwo. next ()

1

>>> oneTwo. next ()

2

>>> oneTwo. next ()

Traceback ... StopIteration

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 13



Generator Example: Alterative Implementation of
GetitemIterator

>>> def GetitemIterator(iterable):

... k = 0

... while True:

... try:

... yield iterable[k]

... k += 1

... except IndexError:

... return

>>> iterobj = GetitemIterator([1, 3, 7])

>>> iterobj. next ()

1

>>> iterobj. next ()

3

>>> for x in GetitemIterator([1, 3, 7]): print(x, end=" ")

1 3 7

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 14



RList Revisited

• Previously, we introduced rlists—recursive lists, aka linked lists.

• Here’s a partial version in class form:

class Link:

empty = ()

def init (self, first, rest=Link.empty):

self. first, self. rest = first, rest

def getitem (self, i):

if i < 0: # Negative indices count from the end.

i += len(self)

p = self # Actually, could use self in place of p.

while p is not empty and i > 0:

p, i = p. rest, i - 1

if p is empty:

raise IndexError

return p. first

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 15



Linked Lists: Using the Iterator

• The iterator that Python creates from getitem is useful inter-
nally:

def len (self):

c = 0

for in self:

c += 1

return c

def str (self):

from io import StringIO

r = StringIO() # A kind of file that builds a string in memory

print("(", file=r, end="")

sep = ""

for p in self: # This creates an iterator that uses getitem .

print(sep + repr(p), file=r, end="")

sep = ", "

print(")", file=r, end="")

return r.getvalue()

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 16



Linked Lists: Fixing Performance

• Unfortunately, the automatic use of getitem to create an itera-
tor like this hides a performance problem.

• We have to redo the work to get to the next list item on each iter-
ation.

• It would be better in this case to create a specialized iterator.

class Link:

...

def iter (self):

p = self

while p is not Link.empty:

yield p. first

p = p. next

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 17



Iterating Over Trees

• Writing an iterator for a tree is tricky and leads to a rather complex
implementation.

• But with a generator, it’s pretty easy:

def preorderLabels(T):

"""Generate the labels of tree T in preorder (i.e., first the node

label, then the preorder labels of the branches.)"""

yield label(T)

for child in branches(T):

for label in preorderLabels(child):

yield label

• A recursive generator!

• We can use for on preorderLabels(child) because Python makes
all its generators into iterables, following the convention that iter-
ators should implement a trivial iter method.

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 18



Facilitating Recursive Generators

• The loop in this last generator comes up with some frequency:

for label in preorderLabels(child):

yield label

• We call the result of preorderLabels(child) a subiterator,

• There is a shorthand for this loop over a subiterator:

def preorderLabels(T):

"""Generate the labels of tree T in preorder (i.e., first the node

label, then the preorder labels of the branches.)"""

yield label(T)

for child in branches(T):

yield from preorderLabels(child)

Last modified: Wed Mar 1 15:52:20 2017 CS61A: Lecture #16 19


	Lecture #16: Iterators, Generators
	An Iterator Confusion
	An Iterator Convention
	Using __getitem__ for Iterables
	Using __getitem__ for Iterables (II)
	Problem: Reconstruct the range class
	Reconstructing Range (I)
	Reconstructing Range (II)
	Reconstructing Range (III)
	Reconstructing Range (IV)
	Reconstructing Range (V)
	Discussion
	Generators
	Generator Example: Alterative Implementation of GetitemIterator
	RList Revisited
	Linked Lists: Using the Iterator
	Linked Lists: Fixing Performance
	Iterating Over Trees
	Facilitating Recursive Generators

