CS 61A Lecture 11

Announcements

Box-and-Pointer Notation

The Closure Property of Data Types

* A method for combining data values satisfies the closure property if:
The result of combination can itself be combined using the same method
* Closure is powerful because it permits us to create hierarchical structures

e Hierarchical structures are made up of parts, which themselves are made up
of parts, and so on

Lists can contain lists as elements (in addition to anything else)

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

Global frame list
0
pair « >

pair = [1, 2]

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

Global frame list
o
pair [«

nested_list \

pair = [1, 2] list list

o [1 o |1 2
nested_list = [[1, 21, [I, ’frb‘ False | None

[[3, False, Nonel,

{4, lambda: 5111 list func A() <line 5> [parent=Global]
) ,/
JInteractive Diagram
Slicing Creates New Values
Global frame
digits = (1, 8, 2, 8] e
start = digits[:1] start
middle = digits[1:3] middle
end = digits[2:] end
full = digits[:] full
Slicing
(Demo)

Processing Container Values

Sequence Aggregation

Several built-in functions take iterable arguments and aggregate them into a value

* sum(iterable[, start]) —-> value
Return the sum of an iterable of numbers (NOT strings) plus the value

of parameter 'start' (which defaults to @). When the iterable is
empty, return start.

- max(iterable[, key=funcl) -> value
max(a, b, ¢, ...[, key=funcl) —> value

With a single iterable argument, return its largest item.
With two or more arguments, return the largest argument.

+ all(iterable) —> bool

Return True if bool(x) is True for all values x in the iterable.
If the iterable is empty, return True.

Tree Abstraction

Root of

branch abel values

Branch—»

branches

Trees
Recursive description (wooden trees): Relative description (family trees):
A tree has a root and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label value
A tree with zero branches is called a leaf One node can be the parent/child of another
People often refer to values by their locations: "“each parent is the sum of its children"
Implementing the Tree Abstraction Implementing the Tree Abstraction
def tree(label, branches=[1): o /) e ES 8 il def tree(label, branches=[]): + A tree has a label
return [label]l + branches value and a list of for branch in branches: value and a list of
\ assert is_tree(branch) |\ tree definition branches

def label(tree):
return tree(0]

3
def branches(tree): / \
return tree([1:]
1 2
/ N
1 1
>>> tree(3, [tree(1),

tree(2, [tree(1),
tree(1)])])
[111]

return [labell + list(branches)

def label(tree): Creates a list 3
return treel0] from a sequence
of branches
. 1 2
def branches(tree): Verifies that Y N
return tree[1:] q
tree is bound 1 1
to a list
def is_tree(tree): >>> tree(3, [tree(1),
if{type(tree) listior len(tree) < 1: tree(2, [tree(1)
return False tree(1)])1)

for branch in branches(tree): [3, [11, [2, [1], [1]]]
if not is_tree(branch):
return False
return True

def is_leaf(tree):
return not branches(tree) (Demo)

Tree Processing

(Demo)

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

def count_leaves(t):
"""Count the leaves of a tree."""
if is_leaf(t):
return 1
else:
branch_counts = [count_leaves(b) for b in branches(t)]

return sum(branch_counts)

(Demo)

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

>>> sum([

[1, 2, 3, 4]

>>> sum([[1]1 1, [])

[1]

=>> sun([[[11], [2]

[ri1, 21
branches(tree)

leaves(tree)

[branches(b) for b in branches(tree)]

[11, 2, 31, [4]

I,

8}

def leaves(tree):
"""Return a list containing the leaves of tree.

>>> leaves(fib_tree(5))
[1, 0, 1, 0, 1, 1,

if is_leaf(tree):
return [label(tree)]

0, 1]

else

[b for b in branches(tree)]
[s for s in leaves(tree)]
[branches(s) for s in leaves(tree)]

[[leaves(b) for b in branches(tree)]

] [leaves(s) for s in leaves(tree)]

;‘eturn sum(List of leaves for each branch [y

Creating Trees

A function that creates a tree from another tree is typically also recursive

def increment_leaves(t):
"""Return a tree like t but with leaf values incremented."""
if is_leaf(t):
return tree(label(t) + 1)
else:

bs = [increment_leaves(b) for b in branches(t)]
return tree(label(t), bs)

a
o
2

increment(t):
"""Return a tree like t but with all node values incremented."""
return tree(label(t) + 1, [increment(b) for b in branches(t)])

Example: Printing Trees

(Demo)

