61A Lecture 26

Announcements

Programming Languages

Programming Languages
A computer typically executes programs written in many different programming languages

Machine languages: statements are interpreted by the hardware itself

e A fixed set of instructions invoke operations implemented by the circuitry of the
central processing unit (CPU)

®* Operations refer to specific hardware memory addresses; no abstraction mechanisms

High-level languages: statements & expressions are interpreted by another program or
compiled (translated) into another language

* Provide means of abstraction such as naming, function definition, and objects

* Abstract away system details to be independent of hardware and operating system

Python 3 Python 3 Byte Code
def square(x): from dis import dis LOAD_FAST 0 (x)
return x x X dis(square) LOAD FAST 0 (x)

BINARY MULTIPLY
RETURN_ VALUE

Metalinguistic Abstraction

A powerful form of abstraction is to define a new language that is tailored to a particular
type of application or problem domain

Type of application: Erlang was designed for concurrent programs. It has built-in elements
for expressing concurrent communication. It is used, for example, to implement chat
servers with many simultaneous connections

Problem domain: The MediaWiki mark-up language was designed for generating static web

pages. It has built-in elements for text formatting and cross—-page linking. It is used, for
example, to create Wikipedia pages

A programming language has:
e Syntax: The legal statements and expressions in the language

e Semantics: The execution/evaluation rule for those statements and expressions

To create a new programming language, you either need a:
e Specification: A document describe the precise syntax and semantics of the language

e Canonical Implementation: An interpreter or compiler for the language

Parsing

Reading Scheme Lists

A Scheme list is written as elements in parentheses:

Each <element> can be a combination or primitive

(+ (x 3 (+ (x24) (+35))) (+ (-107) 6))

The task of parsing a language involves coercing a string representation of an expression
to the expression itself

(Demo)
http://composingprograms.com/examples/scalc/scheme_reader.py.html

Parsing

A Parser takes text and

Text Lexical
€ analysis
Y(+ 1 Y, e, 1
Hi-23) } Y, -, 23,
' (x45.6))" (', 'x', 4, 5.6,

returns an expression

Tokens

P
e Tterative process

e Checks for malformed tokens
e Determines types of tokens

®* Processes one line at a time

.

ntacti :
Syntactic Expression

analysis

Pair('+', Pair(1, ...))
printed as

(+ 1 (-23) (x4 5.6))

* Tree-recursive process
e Balances parentheses

e Returns tree structure

®* Processes multiple lines
o

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression, which may be
nested

Each call to scheme_read consumes the input tokens for exactly one expression

I(Il I+I' 1' I(II I_Il 23' I)II I(II I*Il 4' 5'Gl I)II I)I

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them

(Demo)

Scheme-Syntax Calculator

(Demo)

The Pair Class

The Pair class represents Scheme pairs and lists.
is either a list or nil.

class Pair:
"""A Pair has two instance attributes:
first and second.

For a Pair to be a well-formed list,
second is either a well-formed list or nil.
Some methods only apply to well-formed lists.
def _ init__ (self, first, second):

self.first = first

self.second = second

A list is a pair whose second element

>>> s = Pair(1l, Pair(2, Pair(3, nil)))
>>> print(s)

(1 2 3)

>>> len(s)

3

>>> print(Pair(1, 2))

(1 . 2)

>>> print(Pair(1, Pair(2, 3)))

(1 2 . 3)

>>> len(Pair(1l, Pair(2, 3)))
Traceback (most recent call last):

TypeError: length attempted on improper list

Scheme expressions are represented as Scheme lists! Source code is data

(Demo)

Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2 -4 5.6

A call expression is a combination that begins with an operator (+, -, %, /) followed by 0
or more expressions: (+ 12 3) (/ 3 (+45))

Expressions are represented as Scheme lists (Pair instances) that encode tree structures.

Expression Expression Tree Representation as Pairs

first [second first |second first [second first |second
* ——| 3 — t — 1 nil

45 '
) * 3 first [second first [second first [second first [second
6 7 8)) * | == 6 | == 7 | ~| 8 |nil

+ 4 5 x 6 7 8

(>

3
(
(

+
*

first [second [first |second first [second
+ | &> 4 | ~——| 5 |nil

Calculator Semantics

The value of a calculator expression is defined recursively.
Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.
+: Sum of the arguments
*: Product of the arguments
-: If one argument, negate it. If more than one, subtract the rest from the first.

/: If one argument, invert it. If more than one, divide the rest from the first.

Expression Expression Tree
(+5 61
(x 2 3) 7 -
(x 2 55)) + 5 | 6 50
7N

Evaluation

The Eval Function

The eval function computes the value of an expression, which is always a number

It is a generic function that dispatches on the type of the expression (primitive or call)

Implementation Language Semantics
def calc_eval(exp): Recursive call A number evaluates. ..
if type(exp) in (int, float): ;eturnsha numbeg to itself
return exp or each operan o itse
elif isinstance(exp, Pair): V A call expression evaluates...
arguments = exp.second.map(calc_eval))
returnicalc_apply(exp.first, arguments) to i1ts argument values
else: A A combined by an operator

raise TypeError "+, =1, A Scheme 1list
'x', '/' of numbers

Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values

In calculator, all operations are named by built-in operators: +, -, *, /

Implementation Language Semantics

def calc_apply(operator, args):

if operator == '+"': +:
return reduce(add, args, 0) Sum of the arguments
elif operator == '-' -
elif operator == 'x':
elif operator == '/':
else:

raise TypeError
(Demo)

Interactive Interpreters

Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter
1. Print a prompt
Read text input from the user

Parse the text input into an expression

2

3

4. Evaluate the expression

5 If any errors occur, report those errors, otherwise
6

Print the value of the expression and repeat

(Demo)

Raising Exceptions

Exceptions are raised within lexical analysis, syntactic analysis, eval, and apply

Example exceptions

Lexical analysis: The token 2.3.4 raises ValueError("invalid numeral")
Syntactic analysis: An extra) raises SyntaxError("unexpected token")
Eval: An empty combination raises TypeError("() is not a number or call expression")

Apply: No arguments to - raises TypeError("- requires at least 1 argument")

(Demo)

Handling Exceptions

An interactive interpreter prints information about each error

A well-designed interactive interpreter should not halt completely on an error,
so that the user has an opportunity to try again in the current environment

(Demo)

