61A Lecture 31

Announcements

Efficient Sequence Processing

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def sum_primes(a, b): def sum_primes(a, b):
total = 0 return sum(filter(is_prime, range(a, b)))
x = @ imes(1, 6
while x < b: sum_primes(1, 6)
if is_prime(x): sum filter range iterator
total = total + x
X =X+ 1 source: —»| source: —»| next: 2
return total total: 80 f:is_prime end: 6
Space: O(1) O(1)

(Demo)

Streams

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

(car (cons 1 2)) 1 (car (cons—stream 1 2)) 1
(cdr (cons 1 2)) 2 (cdr-stream (cons-stream 1 2)) 2
(cons 1 (cons 2 nil)) (cons-stream 1 (cons—stream 2 nil))

Errors only occur when expressions are evaluated:

(cons 1 (/ 1 0)) ERROR (cons—stream 1 (/ 1 0)) (1 . #[promise (not forced)])
(car (cons 1 (/ 1 0))) ERROR (car (cons—stream 1 (/ 1 0))) 1

(cdr (cons 1 (/ 10))) ERROR (cdr-stream (cons—-stream 1 (/ 1 0))) ERROR

(Demo)

Stream Ranges are Implicit
A stream can give on-demand access to each element in order

(define (range-stream a b)
(if (>= a b)
nil
(cons-stream a (range-stream (+ a 1) b))))

(define lots (range-stream 1 10000000000000000000))

scm> (car lots)

1

scm> (car (cdr-stream lots))

2

scm> (car (cdr-stream (cdr-stream lots)))
3

Infinite Streams

Integer Stream

An integer stream is a stream of consecutive integers

The rest of the stream is not yet computed when the stream is created

(define (int-stream start)
(cons-stream start (int-stream (+ start 1))))

(Demo)

Stream Processing

(Demo)

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define ones (cons-stream 1 ones)) 11 11 1 1

.................................

Combine two streams by separating each into car and cdr

(define (add-streams s t)
(cons-stream (+ (car s) (car t))
(add-streams (cdr-stream s)
(cdr-stream t))))

(define ints (cons-stream 1 (add-streams ones ints))) 1 2 3 45 6 7

Example: Repeats

(define a (cons-stream 1 (cons-stream 2 (cons-stream 3 a))))

(define (f s) (cons-stream (car s)
(cons-stream (car s)
(f (cdr-stream s)))))

(define (g s) (cons-stream (car s)
(f (g (cdr-stream s)))))

1 2 1 2 1 2
What's (prefix a 8)? (. ;i . ;i)
1 2 2 3 3 1 1
What's (prefix (fa)8):?» (_)
what's (prefix (g a) 8)? (> 2 2 2 3 3 3 1,

Higher-Order Stream Functions

Higher-Order Functions on Streams

Implementations are identical,
but change cons to cons—stream
and change cdr to cdr-stream

(define (map-$te¢am f s)
(if (null? s)
nil
(cons-¢tréamr(£)fJcar s))
(map-$tream f
(cdr-s¥yeam s)))))

(define (filter-s$teg@am f s)
(if (null? s)
nil
(if (f (car s))
(cons-¢teeam) (car s)
(filter-$tfedm $)jJgdr-stream s)))
(filter-$tfedm €)fgdy-stream s)))))

(define (reduce-s$teeamaftd start)
(if (null? s)
start
(reduce-$tream f
(cdr-siream s)
(f start (car s)))))

A Stream of Primes
For any prime k, any larger prime must not be divisible by K.

The stream of integers not divisible by any k <= n is:
The stream of integers not divisible by any k < n
Filtered to remove any element divisible by n

This recurrence is called the Sieve of Eratosthenes

2, 3,4, 5,6, 7\&,\\i‘@\ 11, 12, 13

(Demo)

Promises

Implementing Streams with Delay and Force

A promise is an expression, along with an environment in which to evaluate it
Delaying an expression creates a promise to evaluate it later in the current environment

Forcing a promise returns its value in the environment in which it was defined

scm>
(define promise (let ((x 2)) (lambda () (+ x 1))))

scm> (define x 5)

:(define-macro (delay expr) ~(lambda () ,expr)) E

;o> (Force promise) (define (force promise) (promise))

A stream is a list, but the rest of the list is computed only when forced:

scm> (define ones (cons-stream 1 ones))
g(Hé%iﬁéiHSEF&”EEEHE?E%Fééﬁ”5“55“’ZESHE“Ié“(&éié;”jﬁYij“;
(1 . (lambda () ones)) (define (cdr-stream s) (force (cdr s))) :

