
CS 61A Orders of Growth & Linked Lists
Spring 2018 Discussion 6: March 7, 2018

1 Warmup
What is the order of growth for the following functions? Answer in terms of Θ

(for example, Θ(n)).

1.1 def fib_iter(n):

prev, curr, i = 0, 1, 0

while i < n:

prev, curr = curr, prev + curr

i += 1

return prev

1.2 def fib_recursive(n):

if n == 0 or n == 1:

return n

else:

return fib_recursive(n - 1) + fib_recursive(n - 2)

1.3 Write a function that takes in a a linked list and returns the sum of all its elements.

You may assume all elements in lnk are integers.

def sum_nums(lnk):

"""

>>> a = Link(1, Link(6, Link(7)))

>>> sum_nums(a)

14

"""



2 Orders of Growth & Linked Lists

2 Orders of Growth
When we talk about the efficiency of a function, we are often interested in the

following: as the size of the input grows, how does the runtime of the function

change? And what do we mean by “runtime”?

• square(1) requires one primitive operation: * (multiplication). square(100)

also requires one. No matter what input n we pass into square, it always takes

one operation.

input function call return value number of operations

1 square(1) 1 · 1 1

2 square(2) 2 · 2 1
...

...
...

...

100 square(100) 100 · 100 1
...

...
...

...

n square(n) n · n 1

• factorial(1) requires one multiplication, but factorial(100) requires 100

multiplications. As we increase the input size of n, the runtime (number of

operations) increases linearly proportional to the input.

input function call return value number of operations

1 factorial(1) 1 · 1 1

2 factorial(2) 2 · 1 · 1 2
...

...
...

...

100 factorial(100) 100 · 99 · · · 1 · 1 100
...

...
...

...

n factorial(n) n · (n− 1) · · · 1 · 1 n

For expressing complexity, we use what is called big Θ (Theta) notation. For

example, if we say the running time of a function foo is in Θ(n2), we mean that

the running time of the process will grow proportionally with the square of the size

of the input as it increases to infinity.

• Ignore lower order terms: If a function requires n3 + 3n2 + 5n + 10 oper-

ations with a given input n, then the runtime of this function is Θ(n3). As n

gets larger, the lower order terms (10, 5n, and 3n2) all become insignificant

compared to n3.

• Ignore constants: If a function requires 5n operations with a given input

n, then the runtime of this function is Θ(n). We are only concerned with how

the runtime grows asymptotically with the input, and since 5n is still asymp-

totically linear; the constant factor does not make a difference in runtime

analysis.

Kinds of Growth
Here are some common orders of growth, ranked from no growth to fastest growth:

• Θ(1) — constant time takes the same amount of time regardless of input size



Orders of Growth & Linked Lists 3

• Θ(log n) — logarithmic time

• Θ(n) — linear time

• Θ(n log n) — linearithmic time

• Θ(n2), Θ(n3), etc. — polynomial time

• Θ(2n), Θ(3n), etc. — exponential time (considered “intractable”; these are

really, really horrible)

In addition, some programs will never terminate if they get stuck in an infinite

loop.

Questions
What is the order of growth for the following functions?

2.1 def sum_of_factorial(n):

if n == 0:

return 1

else:

return factorial(n) + sum_of_factorial(n - 1)

2.2 def bonk(n):

total = 0

while n >= 2:

total += n

n = n / 2

return total

2.3 def mod_7(n):

if n % 7 == 0:

return 0

else:

return 1 + mod_7(n - 1)

2.4 def bar(n):

if n % 2 == 1:

return n + 1

return n

def foo(n):

if n < 1:

return 2

if n % 2 == 0:

return foo(n - 1) + foo(n - 2)

else:

return 1 + foo(n - 2)

What is the order of growth of foo(bar(n))?



4 Orders of Growth & Linked Lists

3 Linked Lists
There are many different implementations of sequences in Python. Today, we’ll

explore the linked list implementation.

A linked list is either an empty linked list, or a Link object containing a first value

and the rest of the linked list.

To check if a linked list is an empty linked list, compare it agains the class attribute

Link.empty:

if link is Link.empty:

print('This linked list is empty!')

else:

print('This linked list is not empty!')

Implementation
class Link:

empty = ()

def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)

self.first = first

self.rest = rest

def __repr__(self):

if self.rest:

rest_str = ', ' + repr(self.rest)

else:

rest_str = ''

return 'Link({0}{1})'.format(repr(self.first), rest_str)

@property

def second(self):

return self.rest.first

@second.setter

def second(self, value):

self.rest.first = value

def __str__(self):

string = '<'

while self.rest is not Link.empty:

string += str(self.first) + ' '

self = self.rest

return string + str(self.first) + '>'



Orders of Growth & Linked Lists 5

Questions
3.1 Write a function that takes in a Python list of linked lists and multiplies them

element-wise. It should return a new linked list.

If not all of the Link objects are of equal length, return a linked list whose length is

that of the shortest linked list given. You may assume the Link objects are shallow

linked lists, and that lst of lnks contains at least one linked list.

def multiply_lnks(lst_of_lnks):

"""

>>> a = Link(2, Link(3, Link(5)))

>>> b = Link(6, Link(4, Link(2)))

>>> c = Link(4, Link(1, Link(0, Link(2))))

>>> p = multiply_lnks([a, b, c])

>>> p.first

48

>>> p.rest.first

12

>>> p.rest.rest.rest

()

"""

3.2 Write a function that takes a sorted linked list of integers and mutates it so that

all duplicates are removed.

def remove_duplicates(lnk):

"""

>>> lnk = Link(1, Link(1, Link(1, Link(1, Link(5)))))

>>> unique = remove_duplicates(lnk)

>>> unique

Link(1, Link(5))

>> lnk

Link(1, Link(5))

"""



6 Orders of Growth & Linked Lists

4 Midterm Review
4.1 Write a function that takes a list and returns a new list that keeps only the even-

indexed elements of lst and multiplies them by their corresponding index.

def even_weighted(lst):

"""

>>> x = [1, 2, 3, 4, 5, 6]

>>> even_weighted(x)

[0, 6, 20]

"""

return [_________________________________________________]

4.2 The quicksort sorting algorithm is an efficient and commonly used algorithm to

order the elements of a list. We choose one element of the list to be the pivot

element and partition the remaining elements into two lists: one of elements less

than the pivot and one of elements greater than the pivot. We recursively sort the

two lists, which gives us a sorted list of all the elements less than the pivot and all

the elements greater than the pivot, which we can then combine with the pivot for

a completely sorted list.

First, implement the quicksort list function. Choose the first element of the list

as the pivot. You may assume that all elements are distinct.

def quicksort_list(lst):

"""

>>> quicksort_list([3, 1, 4])

[1, 3, 4]

"""

if _____________________________________________________:

_____________________________________________________

pivot = lst[0]

less = __________________________________________________

greater = _______________________________________________

return __________________________________________________



Orders of Growth & Linked Lists 7

4.3 Write a function that takes in a list and returns the maximum product that can be

formed using nonconsecutive elements of the list. The input list will contain only

numbers greater than or equal to 1.

def max_product(lst):

"""Return the maximum product that can be formed using lst

without using any consecutive numbers

>>> max_product([10,3,1,9,2]) # 10 * 9

90

>>> max_product([5,10,5,10,5]) # 5 * 5 * 5

125

>>> max_product([])

1

"""

4.4 An expression tree is a tree that contains a function for each non-leaf node,

which can be either ’+’ or ’*’. All leaves are numbers. Implement eval_tree,

which evaluates an expression tree to its value. You may want to use the functions

sum and prod, which take a list of numbers and compute the sum and product

respectively.

def eval_tree(tree):

"""Evaluates an expression tree with functions the root.

>>> eval_tree(tree(1))

1

>>> expr = tree('*', [tree(2), tree(3)])

>>> eval_tree(expr)

6

>>> eval_tree(tree('+', [expr, tree(4), tree(5)]))

15

"""



8 Orders of Growth & Linked Lists

4.5 Complete redundant map, which takes a tree t and a function f, and applies f to

the node (2d) times, where d is the depth of the node. The root has a depth of 0.

def redundant_map(t, f):

"""

>>> double = lambda x: x*2

>>> tree = Tree(1, [Tree(1), Tree(2, [Tree(1, [Tree(1)])])])

>>> print_levels(redundant_map(tree, double))

[2] # 1 * 2 ˆ (1) ; Apply double one time

[4, 8] # 1 * 2 ˆ (2), 2 * 2 ˆ (2) ; Apply double two times

[16] # 1 * 2 ˆ (2 ˆ 2) ; Apply double four times

[256] # 1 * 2 ˆ (2 ˆ 3) ; Apply double eight times

"""

t.label = _________________________________________________

new_f = ___________________________________________________

t.branches = ______________________________________________

return t


