61A Lecture 3

Announcements

Print and None

(Demo)

None Indicates that Nothing is Returned
The special value None represents nothing in Python
A function that does not explicitly return a value will return None

Careful: None is not displayed by the interpreter as the value of an expression

>>> def does_not_return_square(x):

X % X
:
>>> does_not_return_square(4) 4 None value is not displayed]

The name sixteen 5>/ sixteen = does_not_return_square(4)

is now bound to -
the value None |>>> sixteen + 4

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'

Pure Functions & Non-Pure Functions

5 Return value
Pure Functions _2: > abs—L

just return values
2,100 b pow
- _) 1267650600228229401496703205376
2 Arguments
1
Non-Pure Functions —L
have side effects -2 P print

) None!
F/ A side effect isn't a
value; it's anything
Python displays the output “-2” that happens as a

consequence of
calling a function

(Demo)

Nested Expressions with Print
None, None P print(...):
i —

) >>> print(print(1), print(2))
P None 1

None None
display “None None”
None
{ print(print(1), print(2)) }

[ore | [Hone |
print(1) print(2)
)

16 print(e): L 2b print(eo): |
N
Lrﬁ}cne rﬁ

display “1” display “2”

) None

Multiple Environments

Life Cycle of a User-Defined Function

?
Formal parameter What happens?
— Return

Def statement: ;square‘(xi): expression A new function is created!
Def returnimul(x, x); Name bound to that function
ST K - L J in the current frame
Body (return statement)
: operand: 2+2
Call expression: ‘square(‘2+2‘ aprgument: z Operafor & operands evaluated
Function (value of operator)

} called on arguments

[operator: square (values of operands)

function: func square(x)

A new frame is created!

Calling/Applying:

: Parameter: nd t rgument
h16 arameters bound to arguments
Body is executed in that new

Multiple Environments in One Diagram!

Global frame func mul(...)

from operator import mul

def square(x): mul - ——>func sauare(x) [parent=Globsll
return mul(x, x) square

Multiple Environments in One Diagram!

from operator import mul
def square(x):

- return mul(x, x)
square(square(3))

Global frame func mul(...)

mul func square(x) [parent=Global
square

= 4 square(square(3))
f1: square [parent=Global]
x |3
Ret:
Vaice |2
square(square(3)) square(square(3))
func square(x)] func square(x) y
square(3) square(3)
i | func square(x) func squ$re(x)
Multiple Environments in One Diagram! Names Have No Meaning Without Environments
from operator import mul @ |Global frame func mul(...) fron operator mport mul @ |Gobat frame func mul(...)
def square(x): mul func square(x) [parent=Global def square(x): ---------- | mul func square(x) [parent=Global]
- return mul(x, x) square ind return mul(x, x) . square

square(square(3))
f1: square [parent=Global]
x [3
Return [g

value

2: square [parent=Global]

<lo
square(square(3)) et
S 81

. - value
func square(x

square(3) An environment is a sequence of frames.

func square(x)

* The global frame alone

* A local, then the global frame

: .

square(square(3)) ?

Every expression is
evaluated in the context

of an environment.

A name evaluates to the
value bound to that name
in the earliest frame of
the current environment in
which that name is found.

: :

square [parent=Global]
x |3

Return |g
value

: square [parent=Global]

x |9

Return |g,
value

An environment is a sequence of frames.
* The global frame alone

* A local, then the global frame

Names Have Different Meanings in Different Environments

A call expression and the body of the function being called
are evaluated in different environments

from operator import mul Global frame func mul(...)

def square(square): mul -
Teturn ml (square, square) o func square(square) [parent=Global
square(4)

f1: square [parent=Global]

square |4

Miscellaneous Python Features

Every expression is - Division
evaluated in the context value |16 Multiple Return Values
of an environment. Source Files
A name evaluates to the Doctests
value bound to that name Default Arguments
in the earliest frame of
the current environment in
which that name is found. (Demo)

I ive Di

Conditional Statements

Statements

A statement is executed

Compound statements:

by the interpreter to perform an action

The first header determines a
statement’s type

<header>:
<statement>
<statement>

The header of a clause
“controls” the suite that
follows

<separating header>:
<statement>
<statement>

def statements are compound
statements

Compound Statements

Compound statements:

A suite is a sequence of

<headerz; statements
<statement> Suit
<statement> UERE

<separating header>: To “execute” a suite means to
<statement> execute its sequence of

<statement> statements, in order

Execution Rule for a sequence of statements:
« Execute the first statement

« Unless directed otherwise, execute the rest

Conditional Statements

(Demo)

def absolute_value(x):
"""Return the absolute value of x.

if x < 0:
1 statement, X mtff“
3 clauses, elif x ==
3 headers, l'feturn 0
3 suites else:
return x
Execution Rule for Conditional Statements: Syntax Tips:

Each clause is considered in order. 1. Always starts with "if" clause.
1. Evaluate the header's expression. 2. Zero or more "elif" clauses.

2. If it is a true value, 3. Zero or one "else" clause,
execute the suite & skip the remaining clauses. always at the end.

Boolean Contexts

def absolute_value(x):

"Return the absolute value of X.

Boolean Contexts

def absolute value(x):
"""Return the absolute value of x.

Two boolean contexts

A retarn 0
2
else:
return x return x
George Boole George Boole
False values in Python: False, 0, '', None (more to come)
True values in Python: Anything else (True)
Read Section 1.5.4!
Reading: brtp: 15-contral
While Statements
(Demo)
> i, total =0, 0 Global frame
> while P BX X3
) > i +1 total B X X 6
Iteration [total = total + i

George Boole

Execution Rule for While Statements:
1. Evaluate the header’s expression.
2. If it is a true value,

execute the (whole) suite,
then return to step 1.

