
61A Lecture 3 Announcements

Print and None

(Demo)

None Indicates that Nothing is Returned

The special value None represents nothing in Python

A function that does not explicitly return a value will return None

Careful: None is not displayed by the interpreter as the value of an expression

4

>>> def does_not_return_square(x):

... x * x

...
>>> does_not_return_square(4)

>>> sixteen = does_not_return_square(4)

>>> sixteen + 4
Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'

The name sixteen
is now bound to
the value None

No return

None value is not displayed

abs

Pure Functions & Non-Pure Functions

-2
2

-2
None

print

Python displays the output “-2”

2, 100
1267650600228229401496703205376

pow

Pure Functions
just return values

Non-Pure Functions
have side effects

Argument

Return value

A side effect isn't a
value; it's anything
that happens as a
consequence of

calling a function

Returns None!

5

2 Arguments

(Demo)

Nested Expressions with Print

None
print(print(1), print(2))

func print(...)

print(...):1
None

display “1”

print(...):2
None

display “2”

print(...):None, None
None

display “None None”

print(1)

func print(...) 1

None
print(2)

2

None

6

Does not get
displayed

func print(...)

Multiple Environments

Life Cycle of a User-Defined Function

Def statement:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

Def
statement

Formal parameter

 Body

Return
expression

(return statement)

A new function is created!

Name bound to that function
in the current frame

 operand: 2+2
 argument: 4

Operator & operands evaluated

Function (value of operator)
called on arguments  
(values of operands) 

What happens?

 operator: square
 function: func square(x)

Signature

4

16

A new frame is created!

Parameters bound to arguments

Body is executed in that new
environment

Argument

Return value

Name

8

Multiple Environments in One Diagram!

square(square(3))

square(3)

3

func square(x)

9

func square(x)

Interactive Diagram

Multiple Environments in One Diagram!

square(square(3))

square(3)
9

3

func square(x)

10

func square(x)

Interactive Diagram

Multiple Environments in One Diagram!

An environment is a sequence of frames.

1

2

1

2

1

• The global frame alone

• A local, then the global frame
11

square(square(3))

square(3)
9

3

func square(x)

func square(x)

81

Interactive Diagram

Names Have No Meaning Without Environments

An environment is a sequence of frames.

• The global frame alone

• A local, then the global frame
12

Every expression is
evaluated in the context
of an environment.

A name evaluates to the
value bound to that name
in the earliest frame of
the current environment in
which that name is found.

1

2

1

2

1

Interactive Diagram

Names Have Different Meanings in Different Environments

13

1

2

1

A call expression and the body of the function being called
are evaluated in different environments

Interactive Diagram

Every expression is
evaluated in the context
of an environment.

A name evaluates to the
value bound to that name
in the earliest frame of
the current environment in
which that name is found.

Miscellaneous Python Features

Division
Multiple Return Values

Source Files
Doctests

Default Arguments

(Demo)

Conditional Statements

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ...
 ...

Compound statements:

Statements

Statement

Suite

Clause
The first header determines a
statement’s type

The header of a clause
“controls” the suite that
follows

def statements are compound
statements

16

A statement is executed by the interpreter to perform an action

Compound Statements

Compound statements:

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ...
 ...

Execution Rule for a sequence of statements:

• Execute the first statement

• Unless directed otherwise, execute the rest

Suite

A suite is a sequence of
statements

To “execute” a suite means to
execute its sequence of
statements, in order

17

Conditional Statements

1 statement,
3 clauses, 
3 headers,
3 suites

Each clause is considered in order.

1. Evaluate the header's expression.

2. If it is a true value,  
execute the suite & skip the remaining clauses.

18

Syntax Tips:

1. Always starts with "if" clause.

2. Zero or more "elif" clauses.

3. Zero or one "else" clause, 
always at the end.

(Demo)

def absolute_value(x):
 """Return the absolute value of x."""
 if x < 0:
 return -x
 elif x == 0:
 return 0
 else:
 return x

Execution Rule for Conditional Statements:

Boolean Contexts

19

def absolute_value(x):
 """Return the absolute value of x."""
 if x < 0:
 return -x
 elif x == 0:
 return 0
 else:
 return x

George Boole

def absolute_value(x):
 """Return the absolute value of x."""
 if x < 0:
 return -x
 elif x == 0:
 return 0
 else:
 return x

Boolean Contexts

False values in Python: False, 0, '', None

True values in Python: Anything else (True)

(more to come)

George Boole

Read Section 1.5.4!

20

Two boolean contextsTwo boolean contexts

Reading: http://composingprograms.com/pages/15-control.html#conditional-statements

Iteration

George Boole

While Statements

1. Evaluate the header’s expression.

2. If it is a true value,  
 execute the (whole) suite, 
 then return to step 1.

1 2 3
1 3 6

22

(Demo)

Execution Rule for While Statements:

